Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 4, Pages 428–440
DOI: https://doi.org/10.1134/S1560354715040024
(Mi rcd23)
 

This article is cited in 8 scientific papers (total in 8 papers)

Rotation of the Body with Movable Internal Masses Around the Center of Mass on a Rough Plane

Alexander V. Sakharov

Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudny, 141700, Russia
Citations (8)
References:
Abstract: We consider the motion of a system consisting of a rigid body and internal movable masses on a rough surface. The possibility of rotation of the system around its center of mass due to the motion of internal movable masses is investigated. To describe the friction between the body and the reference surface, a local Amontons – Coulomb law is selected. To determine the normal stress distribution in the contact area between the body and the surface, a linear dynamically consistent model is used. As examples we consider two configurations of internal masses: a hard horizontal disk and two material points, which move parallel to the longitudinal axis of the body symmetry in the opposite way. Motions of the system are analyzed for selected configurations.
Keywords: dry friction, combined friction, normal stresses, multibody system, movable masses, slider.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00432
Ministry of Education and Science of the Russian Federation 2014/120
This work was supported by the basic part of the state assignment in the field of scientific activity No. 2014/120 “Investigation of the regularities in the dynamics of systems with friction and the development of mobile robots without external drivers” (research No. 2583) and the Russian Foundation for Basic Research (No. 14-01-00432).
Received: 06.03.2015
Bibliographic databases:
Document Type: Article
MSC: 70E18, 70E55, 70E60
Language: English
Citation: Alexander V. Sakharov, “Rotation of the Body with Movable Internal Masses Around the Center of Mass on a Rough Plane”, Regul. Chaotic Dyn., 20:4 (2015), 428–440
Citation in format AMSBIB
\Bibitem{Sak15}
\by Alexander V. Sakharov
\paper Rotation of the Body with Movable Internal Masses Around the Center of Mass on a Rough Plane
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 428--440
\mathnet{http://mi.mathnet.ru/rcd23}
\crossref{https://doi.org/10.1134/S1560354715040024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376599}
\zmath{https://zbmath.org/?q=an:06507833}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..428S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500002}
\elib{https://elibrary.ru/item.asp?id=23996070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938581597}
Linking options:
  • https://www.mathnet.ru/eng/rcd23
  • https://www.mathnet.ru/eng/rcd/v20/i4/p428
  • This publication is cited in the following 8 articles:
    1. Roman Starosta, Paweł Fritzkowski, “Inertial Forces and Friction in Propulsion of a Rigid Body”, Applied Sciences, 15:2 (2025), 517  crossref
    2. Marat Dosaev, “Algorithm for controlling an inertioid robot with a flywheel and an unbalance in conditions of restrictions on the angular acceleration of the unbalance”, Applied Mathematical Modelling, 109 (2022), 797  crossref
    3. Dosaev M. Samsonov V. Hwang Sh.-Sh., “Construction of Control Algorithm in the Problem of the Planar Motion of a Friction-Powered Robot With a Flywheel and An Eccentric Weight”, Appl. Math. Model., 89:2 (2021), 1517–1527  crossref  mathscinet  isi  scopus
    4. S. V. Semendyaev, “Solid system with two massive eccentrics on a rough plane: rotational case”, IFAC-PapersOnLine, 51:2 (2018), 884–889  crossref  isi  scopus
    5. B. S. Bardin, A. S. Panev, “On the motion of a rigid body with an internal moving point mass on a horizontal plane”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 030002  crossref  isi  scopus
    6. S. V. Semendyaev, “Coupled dynamics of solid system with slider-crank mechanisms as internal movers on rough surface with friction”, Coupled Problems in Science and Engineering VII (Coupled Problems 2017), ed. M. Papadrakakis, E. Onate, B. Schrefler, Int. Center Numerical Methods Engineering, 2017, 185–196  isi
    7. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. P. Ivanov, N. N. Erdakova, “On a mechanical lens”, Int. J. Non-Linear Mech., 79 (2016), 115–121  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:268
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025