Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 7-8, Pages 939–954
DOI: https://doi.org/10.1134/S1560354716070157
(Mi rcd238)
 

This article is cited in 22 scientific papers (total in 22 papers)

Spiral Chaos in the Nonholonomic Model of a Chaplygin Top

Alexey V. Borisova, Alexey O. Kazakovb, Igor R. Sataevac

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia
c Institute of Radio Engineering and Electronics RAS, Saratov Branch ul. Zelenaya 38, Saratov, 410019 Russia
Citations (22)
References:
Abstract: This paper presents a numerical study of the chaotic dynamics of a dynamically asymmetric unbalanced ball (Chaplygin top) rolling on a plane. It is well known that the dynamics of such a system reduces to the investigation of a three-dimensional map, which in the general case has no smooth invariant measure. It is shown that homoclinic strange attractors of discrete spiral type (discrete Shilnikov type attractors) arise in this model for certain parameters. From the viewpoint of physical motions, the trace of the contact point of a Chaplygin top on a plane is studied for the case where the phase trajectory sweeps out a discrete spiral attractor. Using the analysis of the trajectory of this trace, a conclusion is drawn about the influence of “strangeness” of the attractor on the motion pattern of the top.
Keywords: nonholonomic constraint, spiral chaos, discrete spiral attractor.
Funding agency Grant number
Russian Foundation for Basic Research 15-08-09261-a
14-01-00344
Ministry of Education and Science of the Russian Federation 98
Russian Science Foundation 15-12-20035
Dynasty Foundation
The work of A.V.Borisov (Introduction, Section 2 and Conclusion) was carried out within the framework of the state assignment for institutions of higher education and supported by the RFBR grant No. 15-08-09261-a. The work of A.O.Kazakov (Sections 1 and 5) was supported by the Basic Research Program at the National Research University Higher School of Economics (project 98), by the Dynasty Foundation, and by the RFBR grant No. 14-01-00344. The work of I.R. Sataev (Sections 3 and 4) was supported by the RSF grant No. 15-12-20035.
Received: 12.10.2016
Accepted: 29.11.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954
Citation in format AMSBIB
\Bibitem{BorKazSat16}
\by Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev
\paper Spiral Chaos in the Nonholonomic Model of a Chaplygin Top
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 7-8
\pages 939--954
\mathnet{http://mi.mathnet.ru/rcd238}
\crossref{https://doi.org/10.1134/S1560354716070157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403091800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015982180}
Linking options:
  • https://www.mathnet.ru/eng/rcd238
  • https://www.mathnet.ru/eng/rcd/v21/i7/p939
  • This publication is cited in the following 22 articles:
    1. Ivan Garashchuk, Alexey Kazakov, Dmitry Sinelshchikov, “Scenarios for the appearance of strange attractors in a model of three interacting microbubble contrast agents”, Chaos, Solitons & Fractals, 182 (2024), 114785  crossref
    2. S. Olenin, S. Stasenko, T. Levanova, “Spiral attractors in a reduced mean-field model of neuron–glial interaction”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:6 (2024)  crossref
    3. E. A. Mikishanina, “Negolonomnye mekhanicheskie sistemy na ploskosti s peremennym uglom naklona”, Zhurnal SVMO, 25:4 (2023), 326–341  mathnet  crossref  mathscinet
    4. Aikan Shykhmamedov, Efrosiniia Karatetskaia, Alexey Kazakov, Nataliya Stankevich, “Scenarios for the creation of hyperchaotic attractors in 3D maps”, Nonlinearity, 36:7 (2023), 3501  crossref
    5. Evgeny A. Grines, Alexey Kazakov, Igor R. Sataev, “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022)  crossref
    6. D. E. Onder, A. A. S. Kalaee, D. O. Winge, A. Wacker, “Chaotic behavior of quantum cascade lasers at ignition”, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 105952  crossref  mathscinet  isi  scopus
    7. A. S. Gonchenko, M. S. Gonchenko, A. D. Kozlov, E. A. Samylina, “On scenarios of the onset of homoclinic attractors in three-dimensional non-orientable maps”, Chaos, 31:4 (2021), 043122  crossref  isi  scopus
    8. S. Gonchenko, A. Gonchenko, A. Kazakov, E. Samylina, “On discrete Lorenz-like attractors”, Chaos, 31:2 (2021), 023117  crossref  mathscinet  isi  scopus
    9. V. Putkaradze, S. Rogers, “On the optimal control of a rolling ball robot actuated by internal point masses”, J. Dyn. Syst. Meas. Control-Trans. ASME, 142:5 (2020)  crossref  isi  scopus
    10. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    11. I. R. Garashchuk, D. I. Sinelshchikov, A. O. Kazakov, N. A. Kudryashov, “Hyperchaos and multistability in the model of two interacting microbubble contrast agents”, Chaos, 29:6 (2019), 063131  crossref  zmath  isi  scopus
    12. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, E. A. Samylina, “Chaotic dynamics and multistability in the nonholonomic model of a celtic stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786  crossref  isi  scopus
    13. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, A. D. Kozlov, Yu. V. Bakhanova, “Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast 2. Spiralnyi khaos trekhmernykh potokov”, Izvestiya vuzov. PND, 27:5 (2019), 7–52  mathnet  crossref  isi  elib  scopus
    14. Ivan R. Garashchuk, Dmitry I. Sinelshchikov, Nikolay A. Kudryashov, “Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall”, Regul. Chaotic Dyn., 23:3 (2018), 257–272  mathnet  crossref  mathscinet  adsnasa
    15. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref
    16. Pavel V. Kuptsov, Sergey P. Kuznetsov, “Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction”, Regul. Chaotic Dyn., 23:7-8 (2018), 908–932  mathnet  crossref
    17. V. Putkaradze, S. Rogers, “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868  crossref  mathscinet  isi  scopus
    18. A. S. Conchenko, S. V. Conchenko, O. V. Kazakovt, A. D. Kozlov, “Elements of contemporary theory of dynamical chaos: a tutorial. Part I. Pseudohyperbolic attractors”, Int. J. Bifurcation Chaos, 28:11 (2018), 1830036  crossref  mathscinet  isi  scopus
    19. S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007  crossref  mathscinet  isi  scopus
    20. A. D. Kozlov, “Primery strannykh attraktorov v trekhmernykh neorientiruemykh otobrazheniyakh”, Zhurnal SVMO, 19:2 (2017), 62–75  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:309
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025