Abstract:
We consider the problem of the inclusion of a diffeomorphism into a flow generated
by an autonomous or time periodic vector field. We discuss various aspects of the problem,
present a series of results (both known and new ones) and point out some unsolved problems.
Keywords:
Poincaré map, averaging, time periodic vector field.
\Bibitem{SauTre16}
\by Sergey M. Saulin, Dmitry V. Treschev
\paper On the Inclusion of a Map Into a Flow
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 5
\pages 538--547
\mathnet{http://mi.mathnet.ru/rcd203}
\crossref{https://doi.org/10.1134/S1560354716050051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3556082}
\zmath{https://zbmath.org/?q=an:06662683}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385167300005}
\elib{https://elibrary.ru/item.asp?id=27572879}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84990966180}
Linking options:
https://www.mathnet.ru/eng/rcd203
https://www.mathnet.ru/eng/rcd/v21/i5/p538
This publication is cited in the following 4 articles:
Alberto Enciso, Daniel Peralta-Salas, “Obstructions to Topological Relaxation for Generic Magnetic Fields”, Arch Rational Mech Anal, 249:1 (2025)
Elena A. Kudryavtseva, Nikolay N. Martynchuk, “Existence of a Smooth Hamiltonian Circle Action
near Parabolic Orbits and Cuspidal Tori”, Regul. Chaotic Dyn., 26:6 (2021), 732–741
R. Ortega, “Periodic differential equations in the plane: a topological perspective”, Periodic Differential Equations in the Plane: a Topological Perspective, de Gruyter Series in Nonlinear Analysis and Applications, 29, Walter de Gruyter Gmbh, 2019, 1–185
V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019), 739–760