Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 5, Pages 531–537
DOI: https://doi.org/10.1134/S156035471605004X
(Mi rcd202)
 

This article is cited in 8 scientific papers (total in 8 papers)

Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory

Vsevolod L. Chernysheva, Anton A. Tolchennikovbcd, Andrei I. Shafarevichdceb

a National Research University “Higher School of Economics”, ul. Myasnitskaya 20, Moscow, 101978 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia
e National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
Citations (8)
References:
Abstract: We review our recent results concerning the propagation of “quasi-particles” in hybrid spaces — topological spaces obtained from graphs via replacing their vertices by Riemannian manifolds. Although the problem is purely classical, it is initiated by the quantum one, namely, by the Cauchy problem for the time-dependent Schrödinger equation with localized initial data.We describe connections between the behavior of quasi-particles with the properties of the corresponding geodesic flows. We also describe connections of our problem with various problems in analytic number theory.
Keywords: hybrid spaces, propagation of quasi-particles, properties of geodesic flows, integral points in polyhedra, theory of abstract primes.
Funding agency Grant number
Russian Science Foundation 16-11-10069
This work was supported by the Russian Scientific Foundation (grant 16–11–10069).
Received: 26.08.2016
Accepted: 08.09.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vsevolod L. Chernyshev, Anton A. Tolchennikov, Andrei I. Shafarevich, “Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory”, Regul. Chaotic Dyn., 21:5 (2016), 531–537
Citation in format AMSBIB
\Bibitem{CheTolSha16}
\by Vsevolod L. Chernyshev, Anton A. Tolchennikov, Andrei I. Shafarevich
\paper Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 5
\pages 531--537
\mathnet{http://mi.mathnet.ru/rcd202}
\crossref{https://doi.org/10.1134/S156035471605004X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3556081}
\zmath{https://zbmath.org/?q=an:1353.37140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385167300004}
\elib{https://elibrary.ru/item.asp?id=27572844}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84990877420}
Linking options:
  • https://www.mathnet.ru/eng/rcd202
  • https://www.mathnet.ru/eng/rcd/v21/i5/p531
  • This publication is cited in the following 8 articles:
    1. Andrew Eliseev, Vsevolod L. Chernyshev, “Upper bound on saturation time of metric graphs by intervals moving on them”, Journal of Mathematical Analysis and Applications, 531:2 (2024), 127873  crossref
    2. Murat V. Vakhitov, Dmitrii S. Minenkov, “On logarithmic asymptotics for the number of restricted partitions in the exponential case”, Moscow J. Comb. Number Th., 12:4 (2023), 297  crossref
    3. V. L. Chernyshev, A. A. Tolchennikov, “A Metric Graph for Which the Number of Possible End Positions of a Random Walk Grows Minimally”, Russ. J. Math. Phys., 29:4 (2022), 426  crossref
    4. A. A. Izmaylov, L. W. Dworzanski, “Automated analysis of DP-systems using timed-arc Petri nets via TAPAAL tool”, Trudy ISP RAN, 32:6 (2020), 155–166  mathnet  crossref
    5. Andrei Shafarevich, Springer Proceedings in Mathematics & Statistics, 273, Recent Developments in Integrable Systems and Related Topics of Mathematical Physics, 2018, 183  crossref
    6. V. L. Chernyshev, A. A. Tolchennikov, “Correction to the Leading Term of Asymptotics in the Problem of Counting the Number of Points Moving on a Metric Tree”, Russ. J. Math. Phys., 24:3 (2017), 290–298  crossref  mathscinet  zmath  isi  scopus
    7. D. S. Minenkov, V. E. Nazaikinskii, V. L. Chernyshev, “On the Limit Shape of Elements of An Arithmetic Semigroup With An Exponentially Growing Counting Function of Basis Elements”, Dokl. Math., 95:3 (2017), 226–229  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. Zh. Sakbaev, I. V. Volovich, “Self-Adjoint Approximations of the Degenerate Schrodinger Operator”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:284
    References:68
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025