Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 6, Pages 681–693
DOI: https://doi.org/10.1134/S1560354714060069
(Mi rcd191)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral

Dmitry Turaevab

a Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
b Imperial College, London, SW7 2AZ UK
Citations (3)
References:
Abstract: A complete description of dynamics in a neighborhood of a finite bunch of homoclinic loops to a saddle equilibrium state of a Hamiltonian system is given.
Keywords: Hamiltonian system, nonintegrability and chaos, resonance crossing, Arnold diffusion.
Funding agency Grant number
Russian Science Foundation 14-41-00044
The work was supported by RSF grant 14-41-00044
Received: 01.10.2014
Accepted: 14.10.2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dmitry Turaev, “Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral”, Regul. Chaotic Dyn., 19:6 (2014), 681–693
Citation in format AMSBIB
\Bibitem{Tur14}
\by Dmitry~Turaev
\paper Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 6
\pages 681--693
\mathnet{http://mi.mathnet.ru/rcd191}
\crossref{https://doi.org/10.1134/S1560354714060069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3284608}
\zmath{https://zbmath.org/?q=an:06507826}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345996200006}
Linking options:
  • https://www.mathnet.ru/eng/rcd191
  • https://www.mathnet.ru/eng/rcd/v19/i6/p681
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:174
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024