|
This article is cited in 7 scientific papers (total in 7 papers)
Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio
Amadeu Delshamsa, Marina Gonchenkob, Pere Gutiérreza a Dep. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya,
Av. Diagonal 647, 08028 Barcelona, Spain
b Technische Universität Berlin, Institut für Mathematik,
Straße des 17. Juni 136, D-10623 Berlin, Germany
Abstract:
We study the exponentially small splitting of invariant manifolds of whiskered
(hyperbolic) tori with two fast frequencies in nearly integrable Hamiltonian
systems whose hyperbolic part is given by a pendulum. We consider a torus whose
frequency ratio is the silver number $\Omega=\sqrt{2}-1$. We show that the
Poincaré – Melnikov method can be applied to establish the existence of
4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic
estimates for the transversality of the splitting whose dependence on the
perturbation parameter $\varepsilon$ satisfies a periodicity property. We also
prove the continuation of the transversality of the homoclinic orbits for all
the sufficiently small values of $\varepsilon$, generalizing the results
previously known for the golden number.
Keywords:
transverse homoclinic orbits, splitting of separatrices, Melnikov integrals, silver ratio.
Received: 16.09.2014 Accepted: 29.09.2014
Citation:
Amadeu Delshams, Marina Gonchenko, Pere Gutiérrez, “Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio”, Regul. Chaotic Dyn., 19:6 (2014), 663–680
Linking options:
https://www.mathnet.ru/eng/rcd190 https://www.mathnet.ru/eng/rcd/v19/i6/p663
|
Statistics & downloads: |
Abstract page: | 186 | References: | 40 |
|