Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 3, Pages 374–414
DOI: https://doi.org/10.1134/S1560354714030083
(Mi rcd161)
 

This article is cited in 17 scientific papers (total in 17 papers)

Polynomial Entropies for Bott Integrable Hamiltonian Systems

Clémence Labrousseab, Jean-Pierre Marcoc

a Université Paris-Dauphine, CEREMADE, Place du Maréchal de Lattre de Tassigny 75775 Paris cedex 16, France
b École Normale Supérieure, DMA, 45 rue d’Ulm F-75230 Paris Cedex 05, France
c Université Paris 6, Analyse Algébrique, 4 Place Jussieu, 75252 Paris cedex 05, France
Citations (17)
References:
Abstract: In this paper, we study the entropy of a Hamiltonian flow in restriction to an energy level where it admits a first integral which is nondegenerate in the sense of Bott. It is easy to see that for such a flow, the topological entropy vanishes. We focus on the polynomial and the weak polynomial entropies ${\rm{h_{pol}}}$ and ${\rm{h_{pol}^*}}$. We show that, under natural conditions on the critical levels of the Bott first integral and on the Hamiltonian function $H$, ${\rm{h_{pol}^*}}\in \{0,1\}$ and ${\rm{h_{pol}}}\in \{0,1,2\}$. To prove this result, our main tool is a semi-global desingularization of the Hamiltonian system in the neighborhood of a polycycle.
Keywords: dynamical complexity, entropy, integrability, Bott integrable Hamiltonians.
Received: 13.01.2014
Accepted: 27.04.2014
Bibliographic databases:
Document Type: Article
MSC: 70H06, 37J05, 37G25
Language: English
Citation: Clémence Labrousse, Jean-Pierre Marco, “Polynomial Entropies for Bott Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 19:3 (2014), 374–414
Citation in format AMSBIB
\Bibitem{LabMar14}
\by Cl\'emence~Labrousse, Jean-Pierre~Marco
\paper Polynomial Entropies for Bott Integrable Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 3
\pages 374--414
\mathnet{http://mi.mathnet.ru/rcd161}
\crossref{https://doi.org/10.1134/S1560354714030083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3215696}
\zmath{https://zbmath.org/?q=an:1308.70025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337051600008}
Linking options:
  • https://www.mathnet.ru/eng/rcd161
  • https://www.mathnet.ru/eng/rcd/v19/i3/p374
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:176
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024