Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 3, Pages 363–373
DOI: https://doi.org/10.1134/S1560354714030071
(Mi rcd160)
 

This article is cited in 8 scientific papers (total in 8 papers)

Normal Form and Nekhoroshev Stability for Nearly Integrable Hamiltonian Systems with Unconditionally Slow Aperiodic Time Dependence

Alessandro Fortunati, Stephen Wiggins

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Citations (8)
References:
Abstract: The aim of this paper is to extend the result of Giorgilli and Zehnder for aperiodic time dependent systems to a case of nearly integrable convex analytic Hamiltonians. The existence of a normal form and then a stability result are shown in the case of a slow aperiodic time dependence that, under some smallness conditions, is independent of the size of the perturbation.
Keywords: Hamiltonian systems, Nekhoroshev theorem, aperiodic time dependence.
Funding agency Grant number
Office of Naval Research N00014-01-1-0769
Ministerio de Economía y Competitividad de España SEV-2011-0087
This research was supported by ONR Grant No. N00014-01-1-0769 and MINECO: ICMAT Severo Ochoa project SEV-2011-0087.
Received: 12.12.2013
Accepted: 11.03.2014
Bibliographic databases:
Document Type: Article
MSC: 70H08, 37J25, 37J40
Language: English
Citation: Alessandro Fortunati, Stephen Wiggins, “Normal Form and Nekhoroshev Stability for Nearly Integrable Hamiltonian Systems with Unconditionally Slow Aperiodic Time Dependence”, Regul. Chaotic Dyn., 19:3 (2014), 363–373
Citation in format AMSBIB
\Bibitem{ForWig14}
\by Alessandro~Fortunati, Stephen~Wiggins
\paper Normal Form and Nekhoroshev Stability for Nearly Integrable
Hamiltonian Systems with Unconditionally Slow Aperiodic
Time Dependence
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 3
\pages 363--373
\mathnet{http://mi.mathnet.ru/rcd160}
\crossref{https://doi.org/10.1134/S1560354714030071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3215695}
\zmath{https://zbmath.org/?q=an:1309.70026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337051600007}
Linking options:
  • https://www.mathnet.ru/eng/rcd160
  • https://www.mathnet.ru/eng/rcd/v19/i3/p363
  • This publication is cited in the following 8 articles:
    1. A. Fortunati, S. Wiggins, “Transient invariant and quasi-invariant structures in an example of an aperiodically time dependent fluid flow”, Int. J. Bifurcation Chaos, 28:5 (2018), 1830015  crossref  mathscinet  zmath  isi
    2. Alessandro Fortunati, Stephen Wiggins, “Transient Invariant and Quasi-Invariant Structures in an Example of an Aperiodically Time Dependent Fluid Flow”, Int. J. Bifurcation Chaos, 28:05 (2018), 1830015  crossref
    3. A. Fortunati, S. Wiggins, “Integrability and strong normal forms for non-autonomous systems in a neighbourhood of an equilibrium”, J. Math. Phys., 57:9 (2016), 092703  crossref  mathscinet  zmath  isi  scopus
    4. A. Fortunati, S. Wiggins, “Negligibility of small divisor effects in the normal form theory for nearly-integrable Hamiltonians with decaying non-autonomous perturbations”, Celest. Mech. Dyn. Astron., 125:2 (2016), 247–262  crossref  mathscinet  zmath  isi  scopus
    5. F. Cong, J. Hong, H. Li, “Quasi-effective stability for nearly integrable Hamiltonian systems”, Discrete Contin. Dyn. Syst.-Ser. B, 21:1 (2016), 67–80  crossref  mathscinet  zmath  isi  scopus
    6. Alessandro Fortunati, Stephen Wiggins, Essays in Mathematics and its Applications, 2016, 89  crossref
    7. Alessandro Fortunati, Stephen Wiggins, “A Kolmogorov Theorem for Nearly Integrable Poisson Systems with Asymptotically Decaying Time-dependent Perturbation”, Regul. Chaotic Dyn., 20:4 (2015), 476–485  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Alessandro Fortunati, Stephen Wiggins, “Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence”, Regul. Chaotic Dyn., 19:5 (2014), 586–600  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:231
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025