Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 1, Pages 64–80
DOI: https://doi.org/10.1134/S1560354714010055
(Mi rcd141)
 

This article is cited in 28 scientific papers (total in 28 papers)

Painlevé’s Paradox and Dynamic Jamming in Simple Models of Passive Dynamic Walking

Yizhar Or

Faculty of Mechanical Engineering, Technion — Israel Institute of Technology, Haifa 32000, Israel
Citations (28)
References:
Abstract: Painlevé's paradox occurs in the rigid-body dynamics of mechanical systems with frictional contacts at configurations where the instantaneous solution is either indeterminate or inconsistent. Dynamic jamming is a scenario where the solution starts with consistent slippage and then converges in finite time to a configuration of inconsistency, while the contact force grows unbounded. The goal of this paper is to demonstrate that these two phenomena are also relevant to the field of robotic walking, and can occur in two classical theoretical models of passive dynamic walking — the rimless wheel and the compass biped. These models typically assume sticking contact and ignore the possibility of foot slippage, an assumption which requires sufficiently large ground friction. Nevertheless, even for large friction, a perturbation that involves foot slippage can be kinematically enforced due to external forces, vibrations, or loose gravel on the surface. In this work, the rimless wheel and compass biped models are revisited, and it is shown that the periodic solutions under sticking contact can suffer from both Painlevé's paradox and dynamic jamming when given a perturbation of foot slippage. Thus, avoidance of these phenomena and analysis of orbital stability with respect to perturbations that include slippage are of crucial importance for robotic legged locomotion.
Keywords: multibody dynamics, rigid body contact, dry friction, Painlevé paradox, passive dynamic walking.
Received: 12.12.2013
Accepted: 29.12.2013
Bibliographic databases:
Document Type: Article
MSC: 70E18, 70E55, 70F35
Language: English
Citation: Yizhar Or, “Painlevé’s Paradox and Dynamic Jamming in Simple Models of Passive Dynamic Walking”, Regul. Chaotic Dyn., 19:1 (2014), 64–80
Citation in format AMSBIB
\Bibitem{Or14}
\by Yizhar~Or
\paper Painlevé’s Paradox and Dynamic Jamming in Simple Models of Passive Dynamic Walking
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 1
\pages 64--80
\mathnet{http://mi.mathnet.ru/rcd141}
\crossref{https://doi.org/10.1134/S1560354714010055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3181037}
\zmath{https://zbmath.org/?q=an:06506691}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333239100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897829949}
Linking options:
  • https://www.mathnet.ru/eng/rcd141
  • https://www.mathnet.ru/eng/rcd/v19/i1/p64
  • This publication is cited in the following 28 articles:
    1. Yunian Shen, W.J. Stronge, Yuhang Zhao, Weixu Zhang, “Dynamic jam of robotic compliant touch system—Painlevé paradox”, International Journal of Mechanical Sciences, 281 (2024), 109578  crossref
    2. N. D. Cheesman, S. J. Hogan, K. Uldall Kristiansen, “The Painlevé paradox in three dimensions: resolution with regularization”, Proc. R. Soc. A., 479:2280 (2023)  crossref
    3. Oleg Makarenkov, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    4. Noah Cheesman, S. J. Hogan, Kristian Uldall Kristiansen, “The Geometry of the Painlevé Paradox”, SIAM J. Appl. Dyn. Syst., 21:3 (2022), 1798  crossref
    5. Oleg Makarenkov, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 519  crossref
    6. Stacey Shield, Aaron M. Johnson, Amir Patel, “Contact-Implicit Direct Collocation With a Discontinuous Velocity State”, IEEE Robot. Autom. Lett., 7:2 (2022), 5779  crossref
    7. Or Y., Varkonyi P.L., “Experimental Verification of Stability Theory For a Planar Rigid Body With Two Unilateral Frictional Contacts”, IEEE Trans. Robot., 37:5 (2021), 1634–1648  crossref  isi  scopus
    8. Reher J., Ames A.D., “Dynamic Walking: Toward Agile and Efficient Bipedal Robots”, Annual Review of Control, Robotics, and Autonomous Systems, Vol 4, 2021, Annual Review of Control Robotics and Autonomous Systems, 4, ed. Leonard N., Annual Reviews, 2021, 535–572  crossref  isi  scopus
    9. Shen Yu., Kuang Y., “Transient Contact-Impact Behavior For Passive Walking of Compliant Bipedal Robots”, EXTREME MECH. LETT., 42 (2021), 101076  crossref  isi  scopus
    10. Makarenkov O., “Existence and Stability of Limit Cycles in the Model of a Planar Passive Biped Walking Down a Slope”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2233 (2020), 20190450  crossref  mathscinet  isi  scopus
    11. Hou W., Ma L., Wang J., Zhao J., “Walking Decision of Hydraulic Quadruped Robot in Complex Environment”, Proceedings of the 32Nd 2020 Chinese Control and Decision Conference (Ccdc 2020), Chinese Control and Decision Conference, IEEE, 2020, 4905–4912  isi
    12. Wenting Hou, Liling Ma, Junzheng Wang, Jiangbo Zhao, 2020 Chinese Control And Decision Conference (CCDC), 2020, 4905  crossref
    13. Y. Kuang, Yu. Shen, “Painlevé paradox and dynamic self-locking during passive walking of bipedal robot”, Eur. J. Mech. A-Solids, 77 (2019), UNSP 103811  crossref  mathscinet  isi  scopus
    14. W.-L. Ma, Y. Or, A. D. Ames, “Dynamic walking on slippery surfaces: demonstrating stable bipedal gaits with planned ground slippage”, 2019 International Conference on Robotics and Automation (Icra), IEEE International Conference on Robotics and Automation Icra, eds. A. Howard, K. Althoefer, F. Arai, F. Arrichiello, B. Caputo, J. Castellanos, K. Hauser, V. Isler, J. Kim, H. Liu, P. Oh, V. Santos, D. Scaramuzza, A. Ude, R. Voyles, K. Yamane, A. Okamura, IEEE, 2019, 3705–3711  isi
    15. D. Marchese, M. Coraggio, S. J. Hogan, M. Bernardo, “Control of Painlevé paradox in a robotic system”, 2019 18Th European Control Conference (Ecc), IEEE, 2019, 2620–2625  isi
    16. Davide Marchese, Marco Coraggio, S. John Hogan, Mario di Bernardo, 2019 18th European Control Conference (ECC), 2019, 2620  crossref
    17. Wen-Loong Ma, Yizhar Or, Aaron D. Ames, 2019 International Conference on Robotics and Automation (ICRA), 2019, 3705  crossref
    18. K. U. Kristiansen, S. J. Hogan, “The Painlevé's paradox”, SIAM J. Appl. Dyn. Syst., 17:1 (2018), 859–908  crossref  mathscinet  zmath  isi  scopus
    19. S. J. Hogan, K. U. Kristiansen, “On the regularization of impact without collision: the Painlevé paradox and compliance”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 473:2202 (2017), 20160773  crossref  mathscinet  isi
    20. P. L. Varkonyi, Y. Or, “Lyapunov stability of a rigid body with two frictional contacts”, Nonlinear Dyn., 88:1 (2017), 363–393  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:263
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025