Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 5, Pages 497–507
DOI: https://doi.org/10.1134/S1560354713050031
(Mi rcd135)
 

This article is cited in 2 scientific papers (total in 2 papers)

Non-integrability of a Self-gravitating Riemann Liquid Ellipsoid

Thierry Combot

IMCCE, 77 Avenue Denfert-Rochereau, 75014 Paris
Citations (2)
References:
Abstract: We consider the motion of a triaxial Riemann ellipsoid of a homogeneous liquid without angular momentum. We prove that it does not admit an additional first integral which is meromorphic in position, impulsions, and elliptic integrals which appear in the potential. This proves that the system is not integrable in the Liouville sense; we actually show that even its restriction to a fixed energy hypersurface is not integrable.
Keywords: Morales–Ramis theory, elliptic functions, monodromy, differential Galois theory, Riemann surfaces.
Received: 23.09.2011
Accepted: 07.09.2013
Bibliographic databases:
Document Type: Article
MSC: 37J30
Language: English
Citation: Thierry Combot, “Non-integrability of a Self-gravitating Riemann Liquid Ellipsoid”, Regul. Chaotic Dyn., 18:5 (2013), 497–507
Citation in format AMSBIB
\Bibitem{Com13}
\by Thierry Combot
\paper Non-integrability of a Self-gravitating Riemann Liquid Ellipsoid
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 497--507
\mathnet{http://mi.mathnet.ru/rcd135}
\crossref{https://doi.org/10.1134/S1560354713050031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3117258}
\zmath{https://zbmath.org/?q=an:06292755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325810200003}
Linking options:
  • https://www.mathnet.ru/eng/rcd135
  • https://www.mathnet.ru/eng/rcd/v18/i5/p497
  • This publication is cited in the following 2 articles:
    1. Boris S. Bardin, Alexander S. Kuleshov, “Application of the Kovacic algorithm for the investigation of motion of a heavy rigid body with a fixed point in the Hess case”, Z Angew Math Mech, 102:11 (2022)  crossref
    2. J. J. Morales-Ruiz, “Picard-Vessiot theory and integrability”, J. Geom. Phys., 87 (2015), 314–343  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:158
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025