Abstract:
We consider the problem of rolling of a ball with an ellipsoidal cavity filled with an ideal fluid, which executes a uniform vortex motion, on an absolutely rough plane. We point out the case of existence of an invariant measure and show that there is a particular case of integrability under conditions of axial symmetry.
This work was carried out at the Udmurt State University and was supported by Grant of the President of the Russian Federation for Support of Leading Scientific Schools NSh-2519.2012.1 “Dynamical Systems of Classical Mechanics and Control Problems”, Analytic Departmental Target Program “Development of Scientific Potential of Higher Schools” (1.1248.2011), Analytic Depart-mental Target Program “Development of Scientific Potential of Higher Schools” (1.7734.2013), Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Agreement №14.A37.21.1935).
Citation:
Alexey V. Borisov, Ivan S. Mamaev, “The Dynamics of the Chaplygin Ball with a Fluid-filled Cavity”, Regul. Chaotic Dyn., 18:5 (2013), 490–496
\Bibitem{BorMam13}
\by Alexey V. Borisov, Ivan S. Mamaev
\paper The Dynamics of the Chaplygin Ball with a Fluid-filled Cavity
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 490--496
\mathnet{http://mi.mathnet.ru/rcd133}
\crossref{https://doi.org/10.1134/S156035471305002X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3117257}
\zmath{https://zbmath.org/?q=an:1286.70008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325810200002}
Linking options:
https://www.mathnet.ru/eng/rcd133
https://www.mathnet.ru/eng/rcd/v18/i5/p490
This publication is cited in the following 11 articles:
Vladimir Dragović, Fariba Khoshnasib-Zeinabad, “Topology of the isoenergy manifolds of the Kirchhoff rigid body case on e(3)”, Topology and its Applications, 311 (2022), 107955
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400
Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204
Alexander P. Ivanov, “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441–448
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453
Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Dynamics of Nonholonomic Systems Consisting of a
Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213
Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “Special Solutions of a High-order Equation for Waves in a Liquid with Gas Bubbles”, Regul. Chaotic Dyn., 19:5 (2014), 576–585
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dinamika negolonomnykh sistem, sostoyaschikh iz sfericheskoi obolochki s podvizhnym tverdym telom vnutri”, Nelineinaya dinam., 9:3 (2013), 547–566