Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2019, Volume 24, Issue 5, Pages 560–582
DOI: https://doi.org/10.1134/S1560354719050071
(Mi rcd1026)
 

This article is cited in 18 scientific papers (total in 18 papers)

Sergey Chaplygin Memorial Issue

Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem

Ivan A. Bizyaevab, Alexey V. Borisovc, Ivan S. Mamaevd

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia
Citations (18)
References:
Abstract: This paper addresses the problem of the rolling of a spherical shell with a frame rotating inside, on which rotors are fastened. It is assumed that the center of mass of the entire system is at the geometric center of the shell.
For the rubber rolling model and the classical rolling model it is shown that, if the angular velocities of rotation of the frame and the rotors are constant, then there exists a noninertial coordinate system (attached to the frame) in which the equations of motion do not depend explicitly on time. The resulting equations of motion preserve an analog of the angular momentum vector and are similar in form to the equations for the Chaplygin ball. Thus, the problem reduces to investigating a two-dimensional Poincaré map.
The case of the rubber rolling model is analyzed in detail. Numerical investigation of its Poincaré map shows the existence of chaotic trajectories, including those associated with a strange attractor. In addition, an analysis is made of the case of motion from rest, in which the problem reduces to investigating the vector field on the sphere S2.
Keywords: nonholonomic mechanics, Chaplygin ball, rolling without slipping and spinning, strange attractor, straight-line motion, stability, limit cycle, balanced beaver-ball.
Funding agency Grant number
Russian Science Foundation 18-71-00110
15-12-20035
Russian Foundation for Basic Research 18-29-10051 mk
Ministry of Education and Science of the Russian Federation 5-100
The work of I.A.Bizyaev (Section 2 and Section 4) was supported by the Russian Science Foundation (project 18-71-00110). The work of A. V. Borisov and I. S.Mamaev was supported by the RFBR Grant No. 18-29-10051 mk and was carried out at MIPT under project 5-100 for state support for leading universities of the Russian Federation. The work of A. V. Borisov (Section 1 and Appendix A) was supported by the Russian Science Foundation (project 15-12-20035).
Received: 08.07.2019
Accepted: 26.08.2019
Bibliographic databases:
Document Type: Article
MSC: 37J60, 37C10
Language: English
Citation: Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582
Citation in format AMSBIB
\Bibitem{BizBorMam19}
\by Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev
\paper Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 5
\pages 560--582
\mathnet{http://mi.mathnet.ru/rcd1026}
\crossref{https://doi.org/10.1134/S1560354719050071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4015396}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000488949000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073254871}
Linking options:
  • https://www.mathnet.ru/eng/rcd1026
  • https://www.mathnet.ru/eng/rcd/v24/i5/p560
  • This publication is cited in the following 18 articles:
    1. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025  crossref
    2. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    3. A. A. Kilin, T. B. Ivanova, “The Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:4 (2023), 533–543  mathnet  crossref
    4. Seyed Amir Tafrishi, Mikhail Svinin, Motoji Yamamoto, Yasuhisa Hirata, “A geometric motion planning for a spin-rolling sphere on a plane”, Applied Mathematical Modelling, 121 (2023), 542  crossref
    5. Evgeniya A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106920–15  mathnet  crossref  isi
    6. E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoret. and Math. Phys., 211:2 (2022), 679–691  mathnet  crossref  crossref  mathscinet  adsnasa
    7. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    8. E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913  mathnet  crossref  mathscinet
    9. Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1  crossref
    10. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    11. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400  mathnet  crossref  mathscinet
    12. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    13. A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462  mathnet  crossref  mathscinet
    14. A. A. Kilin, E. N. Pivovarova, “Neintegriruemost zadachi o kachenii sfericheskogo volchka po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 628–644  mathnet  crossref
    15. I. A. Bizyaev, I. S. Mamaev, “Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    16. A. V. Borisov, A. V. Tsiganov, “The motion of a nonholonomic Chaplygin sphere in a magnetic field, the Grioli problem, and the Barnett-London effect”, Dokl. Phys., 65:3 (2020), 90–93  crossref  isi  scopus
    17. Yury Karavaev, Alexander Kilin, Anton Klekovkin, Elena Pivovarova, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    18. Alexey V. Borisov, Andrey V. Tsiganov, “On the Chaplygin Sphere in a Magnetic Field”, Regul. Chaotic Dyn., 24:6 (2019), 739–754  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:261
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025