Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 6, Pages 635–655
DOI: https://doi.org/10.1134/S1560354709060033
(Mi rcd1004)
 

This article is cited in 26 scientific papers (total in 26 papers)

A generalization of Chaplygin’s Reducibility Theorem

O. E. Fernandeza, T. Mestdagb, A. M. Blocha

a Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI-48109, USA
b Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Gent, Belgium
Citations (26)
Abstract: In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic systems with symmetry described by the Hamilton–Poincaré–d’Alembert equations in arbitrary degrees of freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as Euler–Poincaré–Suslov systems in arbitrary degrees of freedom. In the latter case, we also extend the Hamiltonization Theorem to nonholonomic systems which do not possess an invariant measure. Lastly, we extend previous work on conditionally variational systems using the results above. We illustrate the results through various examples of well-known nonholonomic systems.
Keywords: Hamiltonization, nonholonomic systems, reducing multiplier.
Received: 02.06.2009
Accepted: 10.10.2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. E. Fernandez, T. Mestdag, A. M. Bloch, “A generalization of Chaplygin’s Reducibility Theorem”, Regul. Chaotic Dyn., 14:6 (2009), 635–655
Citation in format AMSBIB
\Bibitem{FerMesBlo09}
\by O. E. Fernandez, T. Mestdag, A. M. Bloch
\paper A generalization of Chaplygin’s Reducibility Theorem
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 6
\pages 635--655
\mathnet{http://mi.mathnet.ru/rcd1004}
\crossref{https://doi.org/10.1134/S1560354709060033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591865}
\zmath{https://zbmath.org/?q=an:1229.37087}
Linking options:
  • https://www.mathnet.ru/eng/rcd1004
  • https://www.mathnet.ru/eng/rcd/v14/i6/p635
  • This publication is cited in the following 26 articles:
    1. Malika Belrhazi, Tom Mestdag, “Geodesic Extensions of Mechanical Systems with Nonholonomic Constraints”, J Nonlinear Sci, 35:2 (2025)  crossref
    2. Federico Talamucci, “Nonlinear nonholonomic systems: a simple approach and various examples”, Meccanica, 59:3 (2024), 333  crossref
    3. Oscar E. Fernandez, “Quantizing Chaplygin Hamiltonizable nonholonomic systems”, Sci Rep, 12:1 (2022)  crossref
    4. Garcia-Naranjo L. U. I. S. C. Vermeeren M. A. T. S., “Structure Preserving Discretization of Time-Reparametrized Hamiltonian Systems With Application to Nonholonomic Mechanics”, J. Comput. Dynam., 8:3 (2021), 241–271  crossref  mathscinet  isi  scopus
    5. Andrey V. Tsiganov, “Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186  mathnet  crossref
    6. Luis C. García-Naranjo, “Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88  mathnet  crossref
    7. Garcia-Naranjo L.C., “Generalisation of Chaplygin'S Reducing Multiplier Theorem With An Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A-Math. Theor., 52:20 (2019), 205203  crossref  mathscinet  isi  scopus
    8. Oscar E. Fernandez, Mala L. Radhakrishnan, “The Quantum Mechanics of a Rolling Molecular “Nanocar””, Sci Rep, 8:1 (2018)  crossref
    9. Paula Balseiro, “Hamiltonization of Solids of Revolution Through Reduction”, J Nonlinear Sci, 27:6 (2017), 2001  crossref
    10. Anthony M. Bloch, Alberto G. Rojo, “Optical mechanical analogy and nonlinear nonholonomic constraints”, Phys. Rev. E, 93:2 (2016)  crossref
    11. Oscar E. Fernandez, “Poincaré transformations in nonholonomic mechanics”, Applied Mathematics Letters, 43 (2015), 96  crossref
    12. A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?”, J. Geom. Phys., 87 (2015), 61–75  mathnet  crossref
    13. Paula Balseiro, Oscar E Fernandez, “Reduction of nonholonomic systems in two stages and Hamiltonization”, Nonlinearity, 28:8 (2015), 2873  crossref
    14. Paula Balseiro, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 1  crossref
    15. A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213  mathnet  crossref  mathscinet  zmath
    17. Oscar E. Fernandez, Anthony M. Bloch, Dmitry V. Zenkov, “The geometry and integrability of the Suslov problem”, Journal of Mathematical Physics, 55:11 (2014)  crossref
    18. Paula Balseiro, “The Jacobiator of Nonholonomic Systems and the Geometry of Reduced Nonholonomic Brackets”, Arch Rational Mech Anal, 214:2 (2014), 453  crossref
    19. A. V. Bolsinov, A. A. Kilin, A. O. Kazakov, “Topologicheskaya monodromiya v negolonomnykh sistemakh”, Nelineinaya dinam., 9:2 (2013), 203–227  mathnet
    20. Alberto G. Rojo, Anthony M. Bloch, “Optical mechanical analogy and Hamiltonization of a nonholonomic system”, Phys. Rev. E, 88:1 (2013)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025