Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 6, Pages 621–634
DOI: https://doi.org/10.1134/S1560354709060021
(Mi rcd1003)
 

This article is cited in 8 scientific papers (total in 8 papers)

Separation of variables in the generalized 4th Appelrot class. II. Real solutions

M. P. Kharlamov

Volgograd Academy of Public Administration, ul. Gagarina 8, Volgograd, 400131 Russia
Citations (8)
Abstract: We continue the analytical solution of the integrable system with two degrees of freedom arising as the generalization of the 4th Appelrot class of motions of the Kowalevski top for the case of two constant force fields [Kharlamov, RCD, vol. 10, no. 4]. The separated variables found in [Kharlamov, RCD, vol. 12, no. 3] are complex in the most part of the integral constants plane. Here we present the real separating variables and obtain the algebraic expressions for the initial Euler–Poisson variables. The finite algorithm of establishing the topology of regular integral manifolds is described. The article straightforwardly refers to some formulas from [Kharlamov, RCD, vol. 12, no. 3].
Keywords: Kowalevski top, double field, Appelrot classes, separation of variables.
Received: 18.06.2009
Accepted: 24.08.2009
Bibliographic databases:
Document Type: Article
MSC: 70E17, 70G40
Language: English
Citation: M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634
Citation in format AMSBIB
\Bibitem{Kha09}
\by M. P. Kharlamov
\paper Separation of variables in the generalized 4th Appelrot class. II. Real solutions
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 6
\pages 621--634
\mathnet{http://mi.mathnet.ru/rcd1003}
\crossref{https://doi.org/10.1134/S1560354709060021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591864}
\zmath{https://zbmath.org/?q=an:1229.70013}
Linking options:
  • https://www.mathnet.ru/eng/rcd1003
  • https://www.mathnet.ru/eng/rcd/v14/i6/p621
  • This publication is cited in the following 8 articles:
    1. M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809  mathnet  mathnet  crossref
    2. H.M. Yehia, “On the regular precession of an asymmetric rigid body acted upon by uniform gravity and magnetic fields”, Egyptian Journal of Basic and Applied Sciences, 2:3 (2015), 200  crossref
    3. Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244  mathnet  crossref  mathscinet  zmath
    4. P. E. Ryabov, “Phase topology of one irreducible integrable problem in the dynamics of a rigid body”, Theoret. and Math. Phys., 176:2 (2013), 1000–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. P. E. Ryabov, M. P. Kharlamov, “Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field”, Sb. Math., 203:2 (2012), 257–287  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51  mathnet
    7. M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805  mathnet
    8. P. E. Ryabov, M. P. Kharlamov, “Analiticheskaya klassifikatsiya osobennostei obobschennogo volchka Kovalevskoi”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 2, 19–28  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025