Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 2, Pages 96–104
DOI: https://doi.org/10.15372/PMTF20160210
(Mi pmtf859)
 

This article is cited in 11 scientific papers (total in 11 papers)

Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

A. G. Egorova, A. M. Kamalutdinova, V. N. Paimushinb, V. A. Firsovb

a Kazan’ (Volga Region) Federal University, Kazan’, 420008, Russia
b Kazan’ National Research Technical University named after A. N. Tupolev, Kazan’, 420111, Russia
Abstract: A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.
Keywords: free mechanical oscillations, drag coefficient, viscous incompressible fluid, damping, decrement of oscillations.
Funding agency Grant number
Russian Science Foundation 14-19-00667
Received: 15.01.2015
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 2, Pages 275–282
DOI: https://doi.org/10.1134/S0021894416020103
Bibliographic databases:
Document Type: Article
UDC: 531.121.1
Language: Russian
Citation: A. G. Egorov, A. M. Kamalutdinov, V. N. Paimushin, V. A. Firsov, “Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate”, Prikl. Mekh. Tekh. Fiz., 57:2 (2016), 96–104; J. Appl. Mech. Tech. Phys., 57:2 (2016), 275–282
Citation in format AMSBIB
\Bibitem{EgoKamPai16}
\by A.~G.~Egorov, A.~M.~Kamalutdinov, V.~N.~Paimushin, V.~A.~Firsov
\paper Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 2
\pages 96--104
\mathnet{http://mi.mathnet.ru/pmtf859}
\crossref{https://doi.org/10.15372/PMTF20160210}
\elib{https://elibrary.ru/item.asp?id=26040230 }
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 2
\pages 275--282
\crossref{https://doi.org/10.1134/S0021894416020103}
Linking options:
  • https://www.mathnet.ru/eng/pmtf859
  • https://www.mathnet.ru/eng/pmtf/v57/i2/p96
  • This publication is cited in the following 11 articles:
    1. Lucian Constantin, Brano Titurus, Thomas C.S. Rendall, Joe J. De Courcy, Jonathan E. Cooper, “Experimental analysis of liquid vertical slosh damping at vacuum and atmospheric pressures”, Journal of Sound and Vibration, 574 (2024), 118228  crossref
    2. Vitaly Nikolaevich Paimushin, Vyacheslav Anatolievich Firsov, Viktor Mikhailovich Shishkin, Ruslan Kamilevich Gazizullin, “Transformational deformation models of continuous thin‐walled structural elements with support elements of finite sizes: Theoretical foundations, computational, and physical experiments”, Z Angew Math Mech, 104:2 (2024)  crossref
    3. V. A. Buzhinskii, “Asimptoticheskii metod opredeleniya dissipatsii energii i koeffitsientov soprotivleniya pri periodicheskom obtekanii plastin zhidkostyu”, Prikl. mekh. tekhn. fiz., 65:2 (2024), 48–61  mathnet  crossref  elib
    4. V. A. Buzhinskii, “ASYMPTOTIC METHOD FOR DETERMINING ENERGY DISSIPATION AND DRAG COEFFICIENT IN A PERIODIC FLUID FLOW AROUND PLATES”, J Appl Mech Tech Phy, 65:2 (2024), 220  crossref
    5. A. N. Nuriev, A. M. Kamalutdinov, “Identification of Characteristics of the Force Aerodynamic Action on Oscillating Cantilevered Beams”, Fluid Dyn, 57:5 (2022), 608  crossref
    6. A. M. Kamalutdinov, A. N. Nuriev, “Hydrodynamic Damping of Beam Oscillations near a Surface”, Fluid Dyn, 56:5 (2021), 657  crossref
    7. A N Nuriev, A M Kamalutdinov, A G Egorov, O N Zaitseva, “Numerical investigation of hydrodynamic influence on long oscillating plates in a viscous fluid”, J. Phys.: Conf. Ser., 1158 (2019), 032040  crossref
    8. V N Paimushin, V A Firsov, R K Gazizullin, V M Shishkin, “Theoretical and experimental method for determining the frequency-dependent dynamic modulus of elasticity and damping characteristics of a titanium alloy OT-4”, J. Phys.: Conf. Ser., 1158 (2019), 032044  crossref
    9. V. N. Paimushin, V. A. Firsov, V. M. Shishkin, “Identification of the Dynamic Elasticity Characteristics and Damping Properties of the OT-4 Titanium Alloy Based on Study of Damping Flexural Vibrations of the Test Specimens”, J. Mach. Manuf. Reliab., 48:2 (2019), 119  crossref
    10. Giuseppe Catania, Matteo Strozzi, “Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology”, Coatings, 8:2 (2018), 73  crossref
    11. V. N. Paimushin, V. A. Firsov, V. M. Shishkin, “Modeling the Dynamic Response of a Carbon-Fiber-Reinforced Plate at Resonant Vibrations Considering the Internal Friction in the Material and the External Aerodynamic Damping”, Mech Compos Mater, 53:4 (2017), 425  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025