Processing math: 100%
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 2, Pages 83–95
DOI: https://doi.org/10.15372/PMTF20160209
(Mi pmtf858)
 

This article is cited in 12 scientific papers (total in 12 papers)

Steady flow of a power-law non-Newtonian fluid across an unconfined square cylinder

A. Pantokratoras

Democritus University of Thrace, Xanthi, 67100, Greece
Abstract: A two-dimensional flow of a non-Newtonian power-law fluid directed normally to a horizontal cylinder with a square cross section is considered in the present paper. The problem is investigated numerically with a finite volume method by using the commercial code Ansys Fluent with a very large computational domain so that the flow could be considered unbounded. The investigation covers the power-law index from 0.1 to 2.0 and the Reynolds number range from 0.001 to 45.000. It is found that the drag coefficient for low Reynolds numbers and low power-law index (n0.5) obeys the relationship CD=A/Re. An equation for the quantity A as a function of the power-law index is derived. The drag coefficient becomes almost independent of the power-law index at high Reynolds numbers and the wake length changes nonlinearly with the Reynolds number and power-law index.
Keywords: square cylinder, power law, drag coefficient, wake.
Received: 08.10.2013
Revised: 20.01.2014
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 2, Pages 264–274
DOI: https://doi.org/10.1134/S0021894416020097
Bibliographic databases:
Document Type: Article
UDC: 532.54
Language: Russian
Citation: A. Pantokratoras, “Steady flow of a power-law non-Newtonian fluid across an unconfined square cylinder”, Prikl. Mekh. Tekh. Fiz., 57:2 (2016), 83–95; J. Appl. Mech. Tech. Phys., 57:2 (2016), 264–274
Citation in format AMSBIB
\Bibitem{Pan16}
\by A.~Pantokratoras
\paper Steady flow of a power-law non-Newtonian fluid across an unconfined square cylinder
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 2
\pages 83--95
\mathnet{http://mi.mathnet.ru/pmtf858}
\crossref{https://doi.org/10.15372/PMTF20160209}
\elib{https://elibrary.ru/item.asp?id=26040227}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 2
\pages 264--274
\crossref{https://doi.org/10.1134/S0021894416020097}
Linking options:
  • https://www.mathnet.ru/eng/pmtf858
  • https://www.mathnet.ru/eng/pmtf/v57/i2/p83
  • This publication is cited in the following 12 articles:
    1. Chandan Kumar Bharti, Geeta Verma, Rabindra Nath Barman, “Computational study of steady flow across a modified semi-circular cylinder in power-law fluids”, International Journal of Thermofluids, 26 (2025), 101082  crossref
    2. G. Verma, R. N. Barman, “Optimized heat transfer and drag reduction through corner modifications in square cylinders immersed in power-law fluids”, Physics of Fluids, 37:2 (2025)  crossref
    3. Xianxiang Zhu, Qi Zhang, Wenquan Zhang, Lei Jin, Zixu Li, “Solid waste slurry grouting transformation mechanism of loose sand layer based on slurry-water replacement effect”, Physics of Fluids, 36:7 (2024)  crossref
    4. Brandon N Julien, Minae Jeon, Erfan Geranfar, Rohit G S Ghode, Michael S H Boutilier, “Response and resilience of carbon nanotube micropillars to shear flow”, Nanotechnology, 35:44 (2024), 445501  crossref
    5. Weiwei Wu, Xu Deng, Shuang Ding, Yanjun Zhang, Dongren Liu, Jin Zhang, “Investigation of Obstacles with Interactive Elements on the Flow in SiC Three-Dimensional Printing”, 3D Printing and Additive Manufacturing, 10:3 (2023), 536  crossref
    6. Jianhua Sun, Hai Gu, Jie Zhang, Yuanyuan Xu, Guoqing Wu, Weiwei Wu, “Generalized Newtonian flow analysis in the microchannel manufactured by SLA considering nano-scale stair effect”, Advances in Mechanical Engineering, 14:1 (2022), 168781402110704  crossref
    7. Deepak Kumar, Akhilesh Kumar Sahu, “Momentum and heat transfer characteristics of a rotating elliptical cylinder in vortex shedding flow of power-law fluids”, Physics of Fluids, 34:10 (2022)  crossref
    8. Bao Xie, Hua Cheng, Xuesong Wang, Zhishu Yao, Chuanxin Rong, Ruihe Zhou, Liangliang Zhang, Longhui Guo, Hong Yu, Wei Xiong, Xusong Xiang, “Theoretical Research on Diffusion Radius of Cement-Based Materials Considering the Pore Characteristics of Porous Media”, Materials, 15:21 (2022), 7763  crossref
    9. Jaspinder Kaur, Roderick Melnik, Anurag Kumar Tiwari, “Forced convection heat transfer study of a blunt-headed cylinder in non-Newtonian power-law fluids”, International Journal of Chemical Reactor Engineering, 19:7 (2021), 673  crossref
    10. Simon Gsell, Umberto D'Ortona, Julien Favier, “Lattice-Boltzmann simulation of creeping generalized Newtonian flows: Theory and guidelines”, Journal of Computational Physics, 429 (2021), 109943  crossref
    11. Asterios Pantokratoras, “A Note on the Drag Coefficient of Steady Flow of Non-Newtonian, Power-Law Fluids across Unbounded Two-Dimensional Bodies at Low Reynolds Numbers”, Fluids, 2:1 (2017), 5  crossref
    12. Asterios Pantokratoras, “Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder”, Fluids, 1:4 (2016), 37  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:49
    Full-text PDF :17
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025