Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 4, Pages 91–106
DOI: https://doi.org/10.15372/PMTF20160409
(Mi pmtf817)
 

This article is cited in 24 scientific papers (total in 24 papers)

Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags

R. Karmakar, A. Sur, M. Kanoria

University of Calcutta, 92 A.P.C. Road, 700009, Kolkata, West Bengal, India
Abstract: The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord–Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained for at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord–Shulman and dual-phase-lag models.
Keywords: two-temperature generalized thermoelasticity, dual-phase-lag model, state-space approach, vector-matrix differential equation.
Received: 03.02.2014
Revised: 12.08.2014
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 4, Pages 652–665
DOI: https://doi.org/10.1134/S002189441604009X
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: R. Karmakar, A. Sur, M. Kanoria, “Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags”, Prikl. Mekh. Tekh. Fiz., 57:4 (2016), 91–106; J. Appl. Mech. Tech. Phys., 57:4 (2016), 652–665
Citation in format AMSBIB
\Bibitem{KarSurKan16}
\by R.~Karmakar, A.~Sur, M.~Kanoria
\paper Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 4
\pages 91--106
\mathnet{http://mi.mathnet.ru/pmtf817}
\crossref{https://doi.org/10.15372/PMTF20160409}
\elib{https://elibrary.ru/item.asp?id=26493343}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 4
\pages 652--665
\crossref{https://doi.org/10.1134/S002189441604009X}
Linking options:
  • https://www.mathnet.ru/eng/pmtf817
  • https://www.mathnet.ru/eng/pmtf/v57/i4/p91
  • This publication is cited in the following 24 articles:
    1. Kirti K. Jojare, Kishor R. Gaikwad, “Memory response on hygrothermal three-phase-lag hollow cylinder due to heat and moisture loading”, Mech Time-Depend Mater, 29:1 (2025)  crossref
    2. Mohamed E. Elzayady, Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Mohammed Alsubhi, Yazeed Alhassan, “Two-stage heat-transfer modeling of cylinder-cavity porous magnetoelastic bodies”, Mech Time-Depend Mater, 2024  crossref
    3. Abhik Sur, “Non-local memory-dependent heat conduction in a magneto-thermoelastic problem”, Waves in Random and Complex Media, 32:1 (2022), 251  crossref
    4. A. M. Zenkour, “Thermal diffusion of an unbounded solid with a spherical cavity via refined three-phase-lag Green–Naghdi models”, Indian J Phys, 96:4 (2022), 1087  crossref
    5. Ashraf M. Zenkour, Daoud S. Mashat, Ashraf M. Allehaibi, “Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories”, Materials, 15:7 (2022), 2432  crossref
    6. Farshad Shakeriaski, Maryam Ghodrat, Juan Escobedo-Diaz, Masud Behnia, “Recent advances in generalized thermoelasticity theory and the modified models: a review”, Journal of Computational Design and Engineering, 8:1 (2021), 15  crossref
    7. Abhik Sur, “Wave propagation analysis of porous asphalts on account of memory responses”, Mechanics Based Design of Structures and Machines, 49:7 (2021), 1109  crossref
    8. Abhik Sur, Mridula Kanoria, “Field equations and corresponding memory responses for a fiber-reinforced functionally graded medium due to heat source”, Mechanics Based Design of Structures and Machines, 49:4 (2021), 511  crossref
    9. Sudip Mondal, Abhik Sur, M. Kanoria, “Photo-thermo-elastic wave propagation under the influence of magnetic field in presence of memory responses”, Mechanics Based Design of Structures and Machines, 49:6 (2021), 862  crossref
    10. Sudip Mondal, Abhik Sur, “Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses”, Waves in Random and Complex Media, 31:6 (2021), 1835  crossref
    11. Pallabi Purkait, Abhik Sur, M. Kanoria, “Magneto-thermoelastic interaction in a functionally graded medium under gravitational field”, Waves in Random and Complex Media, 31:6 (2021), 1633  crossref
    12. Dinesh Kumar Sharma, Nantu Sarkar, Mitali Bachher, “Interactions in a nonlocal thermoelastic hollow sphere with voids due to harmonically varying heat sources”, Waves in Random and Complex Media, 2021, 1  crossref
    13. Pallabi Purkait, Abhik Sur, M. Kanoria, “Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer”, Waves in Random and Complex Media, 31:3 (2021), 515  crossref
    14. Abhik Sur, Sutapa Santra, M. Kanoria, “Memory response on thermal wave propagation in an elastic solid with voids due to influence of magnetic field”, Waves in Random and Complex Media, 31:6 (2021), 1187  crossref
    15. Abhik Sur, Sudip Mondal, M. Kanoria, “Memory response on wave propagation in a thermoelastic plate due to moving band-type thermal loads and magnetic field”, Mechanics Based Design of Structures and Machines, 49:2 (2021), 172  crossref
    16. Sudip Mondal, Abhik Sur, M. Kanoria, “Thermoelastic response of fiber-reinforced epoxy composite under continuous line heat source”, Waves in Random and Complex Media, 31:6 (2021), 1749  crossref
    17. Abhik Sur, M. Kanoria, “Memory response on thermal wave propagation in an elastic solid with voids”, Mechanics Based Design of Structures and Machines, 48:3 (2020), 326  crossref
    18. A. Sur, P. Pal, S. Mondal, M. Kanoria, “Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer”, Acta Mech, 230:5 (2019), 1607  crossref
    19. Sudip Mondal, Abhik Sur, M. Kanoria, “Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative”, Acta Mech, 230:7 (2019), 2325  crossref
    20. Sudip Mondal, Abhik Sur, M. Kanoria, “Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo–Fabrizio heat transport law”, Acta Mech, 230:12 (2019), 4367  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025