Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, Volume 55, Issue 6, Pages 16–26 (Mi pmtf1003)  

This article is cited in 2 scientific papers (total in 2 papers)

Traveling waves in a one-dimensional model of hemodynamics

A. M. Barlukovaa, A. A. Cherevkoab, A. P. Chupakhinab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
Abstract: We consider a one-dimensional model of hemodynamics-blood flow in the blood vessels-which is based on the Navier–Stokes equations averaged over the cross section of the vessel, and conjugate with a linear or nonlinear model for the elastic wall of the vessel. The objective is to study traveling wave solutions using this model. For such solutions, the system of partial differential equations reduces to an ordinary differential equation of the fourth order. The only singular point of the corresponding system of differential equations is found. It is established that at the singular point, the linearization matrix of the system has real or complex roots for different values of the parameters of the problem. With a special choice of the parameters, it has four complex conjugate roots with a nonzero real part or purely imaginary roots. For this case, the effect of the model parameter corresponding to the viscoelastic response of the vessel wall on the solution is investigated. Numerical experiments are performed to verify and analyze the results, and various modes of blood movement are discussed.
Keywords: one-dimensional equations of hemodynamics, viscoelastic tube, traveling wave solutions, singular point, oscillating solutions.
Received: 18.09.2013
English version:
Journal of Applied Mechanics and Technical Physics, 2014, Volume 55, Issue 6, Pages 917–926
DOI: https://doi.org/10.1134/S0021894414060029
Bibliographic databases:
Document Type: Article
UDC: 517.9+532.5+539.3
Language: Russian
Citation: A. M. Barlukova, A. A. Cherevko, A. P. Chupakhin, “Traveling waves in a one-dimensional model of hemodynamics”, Prikl. Mekh. Tekh. Fiz., 55:6 (2014), 16–26; J. Appl. Mech. Tech. Phys., 55:6 (2014), 917–926
Citation in format AMSBIB
\Bibitem{BarCheChu14}
\by A.~M.~Barlukova, A.~A.~Cherevko, A.~P.~Chupakhin
\paper Traveling waves in a one-dimensional model of hemodynamics
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2014
\vol 55
\issue 6
\pages 16--26
\mathnet{http://mi.mathnet.ru/pmtf1003}
\elib{https://elibrary.ru/item.asp?id=22591828 }
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2014
\vol 55
\issue 6
\pages 917--926
\crossref{https://doi.org/10.1134/S0021894414060029}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1003
  • https://www.mathnet.ru/eng/pmtf/v55/i6/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024