Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, Volume 55, Issue 6, Pages 3–15 (Mi pmtf1002)  

This article is cited in 10 scientific papers (total in 10 papers)

Flow of micropolar and viscoplastic fluids in a Hele–Shaw cell

V. V. Shelukhinab, V. V. Neverovab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk, 630090, Russia
Abstract: A generalization of Darcy's law relating the velocity averaged over the transverse coordinate and the pressure gradient is obtained for flows in a thin layer. A nonlinear Darcy's law with a limiting gradient is derived taking into account microrotations and the yield stress. It is shown that the micropolarity of fluids manifests itself as an increase in the apparent viscosity and the limiting pressure gradient. A generalization of Darcy's law for the case of pseudo-plastic and dilatant Herschel–Bulkley fluids is obtained.
Keywords: micropolar viscoplastic fluid, yield stress, Hele–Shaw cell, extension of Darcy's law.
Received: 20.01.2014
English version:
Journal of Applied Mechanics and Technical Physics, 2014, Volume 55, Issue 6, Pages 905–916
DOI: https://doi.org/10.1134/S0021894414060017
Bibliographic databases:
Document Type: Article
UDC: 532.516
Language: Russian
Citation: V. V. Shelukhin, V. V. Neverov, “Flow of micropolar and viscoplastic fluids in a Hele–Shaw cell”, Prikl. Mekh. Tekh. Fiz., 55:6 (2014), 3–15; J. Appl. Mech. Tech. Phys., 55:6 (2014), 905–916
Citation in format AMSBIB
\Bibitem{SheNev14}
\by V.~V.~Shelukhin, V.~V.~Neverov
\paper Flow of micropolar and viscoplastic fluids in a Hele--Shaw cell
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2014
\vol 55
\issue 6
\pages 3--15
\mathnet{http://mi.mathnet.ru/pmtf1002}
\elib{https://elibrary.ru/item.asp?id=22591827}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2014
\vol 55
\issue 6
\pages 905--916
\crossref{https://doi.org/10.1134/S0021894414060017}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1002
  • https://www.mathnet.ru/eng/pmtf/v55/i6/p3
  • This publication is cited in the following 10 articles:
    1. A. N. Popkov, “Analytical solution of boundary layer equations for a nonlinearly viscous dilatant fluid on a flat plate in the case with mass transfer”, J. Appl. Mech. Tech. Phys., 65:4 (2024), 624–628  mathnet  crossref  crossref  elib
    2. Anderson L. A. de Araujo, Nikolai V. Chemetov, “Well-posedness of the Cosserat–Bingham fluid equations”, Nonlinear Differ. Equ. Appl., 29:3 (2022)  crossref
    3. V. V. Neverov, “Global solvability of one-dimensional axially-symmetric micropolar fluid equations”, J. Appl. Industr. Math., 15:1 (2021), 87–96  mathnet  mathnet  crossref  crossref  scopus
    4. Vladimir Shelukhin, “Rotational Particle Separation in Solutions: Micropolar Fluid Theory Approach”, Polymers, 13:7 (2021), 1072  crossref
    5. Vladimir V. Shelukhin, Anastasiya S. Sannikova, “On durability of a hydraulic fracture filled with proppant particles”, J. Phys.: Conf. Ser., 1666:1 (2020), 012058  crossref
    6. V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, Journal of Non-Newtonian Fluid Mechanics, 262 (2018), 25  crossref
    7. V V Neverov, V V Shelukhin, “Thermodynamics of micropolar fluids with variable concentration of polar particles”, J. Phys.: Conf. Ser., 894 (2017), 012134  crossref
    8. V.V. Shelukhin, V.V. Neverov, “Thermodynamics of micropolar Bingham fluids”, Journal of Non-Newtonian Fluid Mechanics, 238 (2016), 16  crossref
    9. V.V. Shelukhin, V.V. Neverov, “Thermodynamics of micropolar Bingham fluids”, Journal of Non-Newtonian Fluid Mechanics, 236 (2016), 83  crossref
    10. V.V. Shelukhin, N.V. Chemetov, “Global Solvability of the One-Dimensional Cosserat–Bingham Fluid Equations”, J. Math. Fluid Mech., 17:3 (2015), 495  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025