Loading [MathJax]/jax/output/SVG/config.js
Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2016, Volume 50, Issue 3, Pages 302–312 (Mi phts6508)  

This article is cited in 16 scientific papers (total in 16 papers)

Electronic properties of semiconductors

A quasi-classical model of the Hubbard gap in lightly compensated semiconductors

N. A. Poklonskiia, S. A. Vyrkoa, A. I. Kovaleva, A. G. Zabrodskiib

a Belarusian State University, Minsk
b Ioffe Institute, St. Petersburg
Abstract: A quasi-classical method for calculating the narrowing of the Hubbard gap between the $A^{0}$ and $A^{-}$ acceptor bands in a hole semiconductor or the $D^{0}$ and $D^{-}$ donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be random and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band ($v$ band) for acceptors or with the bottom of the conduction band ($c$ band) for donors. In other words, the top of the $v$ band for a $p$-type semiconductor or the bottom of the $c$ band for an $n$-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy $\varepsilon_2$ is consistent with available experimental data for lightly compensated $p$-Si crystals doped with boron and $n$-Ge crystals doped with antimony.
Keywords: Charge State, Impurity Atom, Mott Transition, Impurity Band, Thermal Activation Energy.
Received: 03.08.2015
Accepted: 08.09.2015
English version:
Semiconductors, 2016, Volume 50, Issue 3, Pages 299–308
DOI: https://doi.org/10.1134/S1063782616030192
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Poklonskii, S. A. Vyrko, A. I. Kovalev, A. G. Zabrodskii, “A quasi-classical model of the Hubbard gap in lightly compensated semiconductors”, Fizika i Tekhnika Poluprovodnikov, 50:3 (2016), 302–312; Semiconductors, 50:3 (2016), 299–308
Citation in format AMSBIB
\Bibitem{PokVyrKov16}
\by N.~A.~Poklonskii, S.~A.~Vyrko, A.~I.~Kovalev, A.~G.~Zabrodskii
\paper A quasi-classical model of the Hubbard gap in lightly compensated semiconductors
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2016
\vol 50
\issue 3
\pages 302--312
\mathnet{http://mi.mathnet.ru/phts6508}
\elib{https://elibrary.ru/item.asp?id=25668150}
\transl
\jour Semiconductors
\yr 2016
\vol 50
\issue 3
\pages 299--308
\crossref{https://doi.org/10.1134/S1063782616030192}
Linking options:
  • https://www.mathnet.ru/eng/phts6508
  • https://www.mathnet.ru/eng/phts/v50/i3/p302
  • This publication is cited in the following 16 articles:
    1. Nikolai A. Poklonski, Ilya I. Anikeev, Sergey A. Vyrko, Andrei G. Zabrodskii, “Calculation of the Activation Energy of Electrical ε2‐Conductivity of Weakly Compensated Semiconductors”, Physica Status Solidi (b), 2024  crossref
    2. Yasutomo Kajikawa, “Hopping thermopower in FEGA3”, Int. J. Mod. Phys. B, 37:13 (2023)  crossref
    3. Yasutomo Kajikawa, “Hopping conduction in FeSi II. deconvolution analyses of temperature-dependent conductivity and its reduced activation energy”, Int. J. Mod. Phys. B, 36:14 (2022)  crossref
    4. N. A. Poklonski, “Mathematical and computer simulation of semiconductor systems of various dimensions and the elements of device structures based on them”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 57:4 (2021), 495  crossref
    5. N. A. Poklonski, A. N. Dzeraviaha, S. A. Vyrko, A. G. Zabrodskii, A. I. Veinger, P. V. Semenikhin, “Curie–Weiss behavior of the low-temperature paramagnetic susceptibility of semiconductors doped and compensated with hydrogen-like impurities”, AIP Advances, 11:5 (2021)  crossref
    6. Yasutomo Kajikawa, “Hopping conduction in FeSi. I. The Hall, Seebeck, and Nernst effects due to hopping conduction in the top and bottom impurity Hubbard bands”, AIP Advances, 11:10 (2021)  crossref
    7. Yasutomo Kajikawa, “Restudy of low-temperature data of Hall-effect measurements on compensated n-InSb and n-InAs on the basis of an impurity-Hubbard-band model”, Materials Science and Engineering: B, 263 (2021), 114809  crossref
    8. Yasutomo Kajikawa, “Deconvolution of temperature dependence of conductivity, its reduced activation energy, and Hall-effect data for analysing impurity conduction in n-ZnSe”, Philosophical Magazine, 100:15 (2020), 2018  crossref
    9. Nikolai A. Poklonski, Sergey A. Vyrko, Aliaksandr N. Dzeraviaha, “Thermal ionization energy of hydrogen-like impurities in semiconductor materials”, Journal of the Belarusian State University. Physics, 2020, no. 2, 28  crossref
    10. Yasutomo Kajikawa, “Significant Effects of the D- Band on the Hall Coefficient and the Hall Mobility of n‐InP”, Physica Status Solidi (b), 257:2 (2020)  crossref
    11. N A Poklonski, S A Vyrko, A I Kovalev, A N Dzeraviaha, “Drift-diffusion model of hole migration in diamond crystals via states of valence and acceptor bands”, J. Phys. Commun., 2:1 (2018), 015013  crossref
    12. Nikolai A. Poklonski, Sergey A. Vyrko, Alexander I. Kovalev, “THERMAL ACTIVATION ENERGY OF HOPPING ε2-CONDUCTION VIA BORON ATOMS IN WEAKLY COMPENSATED SILICON”, Dokl. Akad. nauk, 62:4 (2018), 406  crossref
    13. Yasutomo Kajikawa, “Updated Analysis of Low‐Temperature Data of Hall‐Effect Measurements on P‐Doped n‐Si on the Basis of an Impurity‐Hubbard‐Band Model”, physica status solidi c, 14:11 (2017)  crossref
    14. Yasutomo Kajikawa, “Refined Analysis of Low‐Temperature Data of Hall‐Effect Measurements on Sb‐Dopedn‐Ge on the Basis of an Impurity‐Hubbard‐Band Model”, Phys. Status Solidi C, 14:9 (2017), 1700151  crossref
    15. Yasutomo Kajikawa, “Analysis of low‐temperature data of Hall‐effect measurements on Ga‐doped p‐Ge on the basis of an impurity‐Hubbard‐band model”, Phys. Status Solidi C, 14:3-4 (2017)  crossref
    16. N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, A. I. Kovalev, A. G. Zabrodskii, “Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond”, Journal of Applied Physics, 119:24 (2016)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :27
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025