Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2021, Issue 2(47), Pages 84–89 (Mi pfmt785)  

MATHEMATICS

A $\sigma$-solubility criterion of a finite group

V. M. Sel'kin, I. V. Blisnets, V. S. Zakrevskaya

Francisk Skorina Gomel State University
References:
Abstract: Throughout this paper, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, that is, $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. A set $\mathcal{H}$ of subgroups of $G$ is a complete Hall $\sigma$-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma_i$-subgroup of $G$ for some $\sigma_i\in\sigma$ and $\mathcal{H}$ contains exactly one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\sigma(G)$. A subgroup $A$ of $G$ is said to be: $\sigma_i$-permutable in $G$ if $G$ possesses a complete Hall $\sigma$-set $\mathcal{H}$ such that $AH^x=H^xA$ for all $H\in\mathcal{H}$ and all $x\in G$; $\sigma$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_n=G$ such that either $A_{i-1}\unlhd A_i$ or $A_i/(A_{i-1})_{A_i}$ is $\sigma$-primary for all $i=1,\dots,n$. A subgroup $A$ of $G$ is said to be weakly $\sigma$-permutable in $G$ if there is a $\sigma$-permutable subgroup $S$ and a $\sigma$-subnormal subgroup $T$ of $G$ such that $G=AT$ and $A\cap T\leqslant S\leqslant A$. In this paper it is proved that if in every maximal chain $M_3<M_2<M_1<M_0=G$ of $G$ of length $3$ at least one of the subgroups $M_3$, $M_2$, or $M_1$ is either submodular or weakly $\sigma$-permutable in $G$, then $G$ is $\sigma$-soluble.
Keywords: finite group, $\sigma$-soluble group, $\sigma$-subnormal subgroup, $\sigma$-permutable subgroup, weakly $\sigma$-permutable subgroup, modular subgroup.
Received: 28.04.2021
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. M. Sel'kin, I. V. Blisnets, V. S. Zakrevskaya, “A $\sigma$-solubility criterion of a finite group”, PFMT, 2021, no. 2(47), 84–89
Citation in format AMSBIB
\Bibitem{SelBliZak21}
\by V.~M.~Sel'kin, I.~V.~Blisnets, V.~S.~Zakrevskaya
\paper A $\sigma$-solubility criterion of a finite group
\jour PFMT
\yr 2021
\issue 2(47)
\pages 84--89
\mathnet{http://mi.mathnet.ru/pfmt785}
Linking options:
  • https://www.mathnet.ru/eng/pfmt785
  • https://www.mathnet.ru/eng/pfmt/y2021/i2/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :41
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024