|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2021, Issue 2(47), Pages 81–83
(Mi pfmt784)
|
|
|
|
MATHEMATICS
Trigonometric Padé approximants of special functions
N. V. Ryabchenko Francisk Skorina Gomel State University
Abstract:
For the functions $H_\gamma=\sum_{k=1}^\infty\sin kx/(\gamma)_k$, where $(\gamma)_k=\gamma(\gamma+1)\cdots(\gamma+k-1)$ and their trigonometric Padé approximations $\pi^t_{n,m}(x;H_\gamma)$ the asymptotics of decreasing difference $H_\gamma(x)-\pi^t_{n,m}(x;H_\gamma)$ in the case is found, where $0\leqslant m\leqslant m(n)$, $m(n)=o(n)$, as $n\to\infty$. Particulary, we determine that, under the same assumption, the trigonometric Padé approximations $\pi^t_{n,m}(x;H_\gamma)$ converge to $H_\gamma$ uniformly on the $\mathbb{R}$ with the asymptotically best rate.
Keywords:
Padé approximations, asymptotic equality, best uniform approximation, trigonometric Padé approximations, rational approximations.
Received: 05.03.2021
Citation:
N. V. Ryabchenko, “Trigonometric Padé approximants of special functions”, PFMT, 2021, no. 2(47), 81–83
Linking options:
https://www.mathnet.ru/eng/pfmt784 https://www.mathnet.ru/eng/pfmt/y2021/i2/p81
|
Statistics & downloads: |
Abstract page: | 89 | Full-text PDF : | 37 | References: | 25 |
|