Loading [MathJax]/jax/output/CommonHTML/jax.js
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2020, Issue 4(45), Pages 95–97 (Mi pfmt752)  

MATHEMATICS

On the σi-length of a finite σ-soluble group

N. S. Kosenoka, V. M. Selkinb

a Belarusian Trade and Economic University of Consumer Cooperatives, Gomel
b F. Scorina Gomel State University
References:
Abstract: Let σ={σiiI} be some partition of the set of all primes P and G a finite group. G is said to be σ-soluble if every chief factor H/K of G is a σi-group for some i=i(H/K). We prove the following
Theorem. (i) If G is π-separable, H is a nilpotent Hall π-subgroup and E a π-complement of G such that EX=XE for some subgroup X of H such that HXΦ(H), then lπ(G)1.
(ii) If G is σ-soluble and {H1,,Ht} is a Wielandt σ-basis of G such that Hi permutes with Hj for all ij, then lσi(G)1 for all i.
(iii) If G is σ-soluble and {H1,,Ht} is a Wielandt σ-basis of G such that Hi permutes with Φ(Hj) for all ij, then lσi(G)1 for all i.
(iv) If lπ(G)1, then QX=XQ each characteristic subgroup X of H and any Sylow subgroup Q of G such that HQ=QH.
(v) If G is σ-soluble with lσi1 for all i and {H1,,Ht} is a σ-basis of G, then each characteristic subgroup of Hi permutes with each characteristic subgroup of Hj.
Keywords: finite group, σ-soluble group, π-separable group, π-length, Hall subgroup.
Received: 11.11.2020
Document Type: Article
UDC: 512.542
Language: English
Citation: N. S. Kosenok, V. M. Selkin, “On the σi-length of a finite σ-soluble group”, PFMT, 2020, no. 4(45), 95–97
Citation in format AMSBIB
\Bibitem{KosSel20}
\by N.~S.~Kosenok, V.~M.~Selkin
\paper On the $\sigma_i$-length of a finite $\sigma$-soluble group
\jour PFMT
\yr 2020
\issue 4(45)
\pages 95--97
\mathnet{http://mi.mathnet.ru/pfmt752}
Linking options:
  • https://www.mathnet.ru/eng/pfmt752
  • https://www.mathnet.ru/eng/pfmt/y2020/i4/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :40
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025