Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2020, Issue 4(45), Pages 95–97 (Mi pfmt752)  

MATHEMATICS

On the $\sigma_i$-length of a finite $\sigma$-soluble group

N. S. Kosenoka, V. M. Selkinb

a Belarusian Trade and Economic University of Consumer Cooperatives, Gomel
b F. Scorina Gomel State University
References:
Abstract: Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. $G$ is said to be $\sigma$-soluble if every chief factor $H/K$ of $G$ is a $\sigma_i$-group for some $i=i(H/K)$. We prove the following
Theorem. (i) If $G$ is $\pi$-separable, $H$ is a nilpotent Hall $\pi$-subgroup and $E$ a $\pi$-complement of $G$ such that $EX=XE$ for some subgroup $X$ of $H$ such that $H'\leqslant X\leqslant \Phi(H)$, then $l_\pi(G)\leqslant1$.
(ii) If $G$ is $\sigma$-soluble and $\{H_1,\dots, H_t\}$ is a Wielandt $\sigma$-basis of $G$ such that $H_i$ permutes with $H_j$ for all $i$$j$, then $l_{\sigma_i}(G)\leqslant 1$ for all $i$.
(iii) If $G$ is $\sigma$-soluble and $\{H_1,\dots, H_t\}$ is a Wielandt $\sigma$-basis of $G$ such that $H_i$ permutes with $\Phi(H_j)$ for all $i$$j$, then $l_{\sigma_i}(G)\leqslant 1$ for all $i$.
(iv) If $l_\pi(G)\leqslant 1$, then $QX=XQ$ each characteristic subgroup $X$ of $H$ and any Sylow subgroup $Q$ of $G$ such that $HQ=QH$.
(v) If $G$ is $\sigma$-soluble with $l_{\sigma_i}\leqslant 1$ for all $i$ and $\{H_1,\dots, H_t\}$ is a $\sigma$-basis of $G$, then each characteristic subgroup of $H_i$ permutes with each characteristic subgroup of $H_j$.
Keywords: finite group, $\sigma$-soluble group, $\pi$-separable group, $\pi$-length, Hall subgroup.
Received: 11.11.2020
Document Type: Article
UDC: 512.542
Language: English
Citation: N. S. Kosenok, V. M. Selkin, “On the $\sigma_i$-length of a finite $\sigma$-soluble group”, PFMT, 2020, no. 4(45), 95–97
Citation in format AMSBIB
\Bibitem{KosSel20}
\by N.~S.~Kosenok, V.~M.~Selkin
\paper On the $\sigma_i$-length of a finite $\sigma$-soluble group
\jour PFMT
\yr 2020
\issue 4(45)
\pages 95--97
\mathnet{http://mi.mathnet.ru/pfmt752}
Linking options:
  • https://www.mathnet.ru/eng/pfmt752
  • https://www.mathnet.ru/eng/pfmt/y2020/i4/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :32
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024