Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2020, Issue 4(45), Pages 91–94 (Mi pfmt751)  

MATHEMATICS

On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup

I. M. Dergacheva, I. P. Shabalina, E. A. Zadorozhnyuk

Belarusian State University of Transport, Gomel
References:
Abstract: Throughout this paper, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, that is, $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. The group $G$ is said to be: $\sigma$-primary if $G$ is a $\sigma_i$-group for some $i$; $\sigma$-nilpotent if every chief factor $H/K$ of $G$ is $\sigma$-central in $G$, that is, $(H/K)\rtimes(G/C_G(H/K))$ is $\sigma$-primary. The symbol $G^{\mathfrak{N}_\sigma}$ denotes the $\sigma$-nilpotent residual of $G$, that is, the intersection of all normal subgroups $N$ of $G$ such that $G/N$ is $\sigma$-nilpotent; $Z_\sigma(G)$ is the $\sigma$-nilpotent hypercentre of $G$, that is, the product of all normal subgroups $N$ of $G$ such that either $N=1$ of $N\ne1$ and every chief factor of $G$ below $N$ is $\sigma$-central in $G$. A subgroup $A$ of $G$ is said to be $\sigma$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_n=G$ such that either $A_{i-1}\unlhd A_i$ or $A_i/(A_{i-1})_{A_i}$ is $\sigma$-primary for all $i=1,\dots,n$. In this paper, we prove that if $S$ be a $\sigma$-subnormal subgroup of $G$ and $Z_\sigma(E)=1$ for every subgroup $E$ of $G$ such that $S\leqslant E$, then $C_G(S^{\mathfrak{N}_\sigma})\leqslant S^{\mathfrak{N}_\sigma}$.
Keywords: finite group, $\sigma$-nilpotent group, $\sigma$-subnormal subgroup, $\sigma$-nilpotent residual of a finite group, $\sigma$-nilpotent hypercentre.
Received: 31.10.2020
Document Type: Article
UDC: 512.542
Language: Russian
Citation: I. M. Dergacheva, I. P. Shabalina, E. A. Zadorozhnyuk, “On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup”, PFMT, 2020, no. 4(45), 91–94
Citation in format AMSBIB
\Bibitem{DerShaZad20}
\by I.~M.~Dergacheva, I.~P.~Shabalina, E.~A.~Zadorozhnyuk
\paper On the centralizer of the $\sigma$-nilpotent residual of the $\sigma$-subnormal subgroup
\jour PFMT
\yr 2020
\issue 4(45)
\pages 91--94
\mathnet{http://mi.mathnet.ru/pfmt751}
Linking options:
  • https://www.mathnet.ru/eng/pfmt751
  • https://www.mathnet.ru/eng/pfmt/y2020/i4/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :37
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024