|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2017, Issue 3(32), Pages 36–42
(Mi pfmt515)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
On the intersections of maximal subgroups of finite groups containing formation radicals
L. M. Belokon Mogilev State University of Food Technologies
Abstract:
For nonempty radical formation $\mathfrak{F}$ and a finite group $G$ the following statement was proved: if there exist maximal subgroups
of $G$ containing $G_{\mathfrak{F}}$, but not containing $G_{\mathfrak{FN}}$, that is $\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\ne G$, and the factor group $\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)\cap \Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}\subseteq\mathrm{F}_{\Phi_{G_{\mathfrak{F}}}}(G)$.
In particular, if $G\ne G_{\mathfrak{F}}$ and $\mathrm{Soc}(G/\Phi_{G_{\mathfrak{F}}}(G))=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is
solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)$. The corresponding consequences were obtained for products of non-empty radical formations, in particular for $\mathfrak{F}=\mathfrak{N}^{n-1}$, $n$ is any natural number.
Keywords:
radical formations of finite groups, products of radical formations, $\mathfrak{F}$-radicals, intersections of maximal subgroups.
Received: 01.06.2017
Citation:
L. M. Belokon, “On the intersections of maximal subgroups of finite groups containing formation radicals”, PFMT, 2017, no. 3(32), 36–42
Linking options:
https://www.mathnet.ru/eng/pfmt515 https://www.mathnet.ru/eng/pfmt/y2017/i3/p36
|
Statistics & downloads: |
Abstract page: | 108 | Full-text PDF : | 26 | References: | 26 |
|