|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2017, Issue 2(31), Pages 46–49
(Mi pfmt501)
|
|
|
|
MATHEMATICS
A criterion for a finite group to belong a saturated formation
I. M. Dergacheva, I. P. Shabalina, E. A. Zadorozhnyuk Belarusian State University of Transport
Abstract:
We prove the following result: Let $\mathcal{F}$ be a hereditary saturated formation of $p$-soluble groups containing all $p$-supersoluble
groups such that $\mathcal{F}=\mathcal{G}_p\mathcal{F}$. Let $G=AT$ where $A$ is a Hall $\pi$-subgroup of $G$, $p\notin\pi$ and $T$ is a $p$-supersoluble subgroup of $G$. Suppose that for a Sylow $p$-subgroup $P$ of $T$ we have $|P|>p$. If $A$ permutes with a Hall $p'$-subgroup of $T$ and with all
maximal subgroups $V$ of $P$ such that $G^{\mathcal{F}}\cap P\not\leqslant V$, then $G\in\mathcal{F}$.
Keywords:
finite group, saturated formation, $p$-soluble group, $p$-supersoluble group, Hall subgroup.
Received: 29.04.2017
Citation:
I. M. Dergacheva, I. P. Shabalina, E. A. Zadorozhnyuk, “A criterion for a finite group to belong a saturated formation”, PFMT, 2017, no. 2(31), 46–49
Linking options:
https://www.mathnet.ru/eng/pfmt501 https://www.mathnet.ru/eng/pfmt/y2017/i2/p46
|
Statistics & downloads: |
Abstract page: | 213 | Full-text PDF : | 42 | References: | 44 |
|