Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2017, Issue 2(31), Pages 40–45 (Mi pfmt500)  

MATHEMATICS

Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal

Bin Hua, Jianhong Huanga, A. N. Skibab

a Jiangsu Normal University, Xuzhou
b F. Scorina Gomel State University
References:
Abstract: Let $G$ be a finite group and $M$ a subgroup of $G$. Then $M$ is called: modular in $G$ if the following conditions are held: (i) $\langle X, M\cap Z\rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z\rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant Z$; quasinormal (respectively $S$-quasinormal) in $G$ if $MP=PM$ for all subgroups (respectively for all Sylow subgroups) $P$ of $G$. We say that $M$ is a generalized subnormal (respectively generalized $S$-quasinormal) subgroup of $G$ if $H=\langle A, B\rangle$ for some modular subgroup $A$ and subnormal (respectively $S$-quasinormal) subgroup $B$ of $G$. If $M_n< M_{n-1}<\dots<M_1<M_0=G$, where $M_i$ is a maximal subgroup of $M_{i-1}$ for all $i=1,\dots,n$, then $M_n$ ($n>0$) is an $n$-maximal subgroup of $G$. In this paper, we study finite groups whose $n$-maximal subgroups are generalized subnormal or generalized $S$-quasinormal.
Keywords: finite group, $S$-quasinormal subgroup, modular subgroup, generalized subnormal subgroup, generalized $S$-quasinormal subgroup.
Funding agency Grant number
National Natural Science Foundation of China 11401264
TAPP of Jiangsu Higher Education Institutions PPZY 2015A013
Research is supported by an NNSF grant of China (Grant № 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).
Received: 05.05.2017
Document Type: Article
UDC: 512.542
Language: English
Citation: Bin Hu, Jianhong Huang, A. N. Skiba, “Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal”, PFMT, 2017, no. 2(31), 40–45
Citation in format AMSBIB
\Bibitem{HuHuaSki17}
\by Bin~Hu, Jianhong Huang, A.~N.~Skiba
\paper Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
\jour PFMT
\yr 2017
\issue 2(31)
\pages 40--45
\mathnet{http://mi.mathnet.ru/pfmt500}
Linking options:
  • https://www.mathnet.ru/eng/pfmt500
  • https://www.mathnet.ru/eng/pfmt/y2017/i2/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :60
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024