Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2015, Issue 3(24), Pages 70–83 (Mi pfmt395)  

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

On $\sigma$-properties of finite groups II

A. N. Skiba

F. Scorina Gomel State University, Gomel, Belarus
Full-text PDF (553 kB) Citations (6)
References:
Abstract: Let $G$ be a finite group, $\sigma=\{\sigma_i \mid i\in I\}$ some partition of the set $\mathbb{P}$ of all primes and $\Pi$ a subset of the set $\sigma$. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\Pi$-set of $G$ if $\mathcal{H}$ contains exact one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\Pi$ such that $\sigma_i\cap\pi(G)\ne\varnothing$. We say also that $G$ is: $\Pi$-full if $G$ possess a complete Hall $\Pi$-set; a $\Pi$-full group of Sylow type if for each $\sigma_i\in\Pi$, every subgroup $E$ of $G$ is a $D_{\sigma_i}$-group, that is, $E$ has a Hall $\sigma_i$-subgroup $H$ and every $\sigma_i$-subgroup of $E$ is contained in some conjugate of $H^x$ ($x\in E$). In this paper we study properties of finite $\Pi$-full groups. The work continues the research of the paper [1].
Keywords: finite group, $\Pi$-full group, $\sigma$-soluble group, $\sigma$-nilpotent group, $\sigma$-quasinilpotent group.
Received: 14.07.2015
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. N. Skiba, “On $\sigma$-properties of finite groups II”, PFMT, 2015, no. 3(24), 70–83
Citation in format AMSBIB
\Bibitem{Ski15}
\by A.~N.~Skiba
\paper On $\sigma$-properties of finite groups~II
\jour PFMT
\yr 2015
\issue 3(24)
\pages 70--83
\mathnet{http://mi.mathnet.ru/pfmt395}
Linking options:
  • https://www.mathnet.ru/eng/pfmt395
  • https://www.mathnet.ru/eng/pfmt/y2015/i3/p70
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024