Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2014, Issue 3(20), Pages 32–36 (Mi pfmt318)  

PHYSICS

Scalar particle with intrinsic structure in the electromagnetic field in curved space-time

E. M. Ovsiyuk, O. V. Veko, K. V. Kazmerchuk

I. P. Shamyakin Mozyr State Pedagogical University, Mozyr, Belarus
References:
Abstract: Relativistic theory of the Cox’s scalar not point-like particle with intrinsic structure is developed in the presence of external electromagnetic and gravitational fields; the latter is described by pseudo-Riemannian space-time geometry. It is shown that the generalized Proca-like tensor system of equations of the first order contains non minimal interaction terms through electromagnetic tensor $F_{\beta\alpha}$ and Ricci tensor $R_{\beta\alpha}$. Generalized scalar equation of the Klein–Fock–Gordon type turns out to be much more complicated than the ordinary wave equation.
Keywords: spin zero, intrinsic structure, Cox’s particle, generalized wave equation, Riemannian space.
Received: 13.06.2014
Document Type: Article
UDC: 539.12
Language: Russian
Citation: E. M. Ovsiyuk, O. V. Veko, K. V. Kazmerchuk, “Scalar particle with intrinsic structure in the electromagnetic field in curved space-time”, PFMT, 2014, no. 3(20), 32–36
Citation in format AMSBIB
\Bibitem{OvsVekKaz14}
\by E.~M.~Ovsiyuk, O.~V.~Veko, K.~V.~Kazmerchuk
\paper Scalar particle with intrinsic structure in the electromagnetic field in curved space-time
\jour PFMT
\yr 2014
\issue 3(20)
\pages 32--36
\mathnet{http://mi.mathnet.ru/pfmt318}
Linking options:
  • https://www.mathnet.ru/eng/pfmt318
  • https://www.mathnet.ru/eng/pfmt/y2014/i3/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :135
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024