List of scientific publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
V. I. Buslaev, “Multipoint Geronimus and Schur parameters of measures on a circle and on a line”, Sb. Math., 215:8 (2024), 1007–1042 |
|
2023 |
2. |
V. I. Buslaev, “Solvability of the Nevanlinna-Pick interpolation problem”, Sb. Math., 214:8 (2023), 1066–1100 |
|
2022 |
3. |
V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Carathéodory function”, Sb. Math., 213:11 (2022), 1488–1506 |
4. |
V. I. Buslaev, “On the Krein–Rechtman Theorem in the Presence of Multiple Points”, Math. Notes, 112:2 (2022), 313–317 |
5. |
V. I. Buslaev, V. M. Buchstaber, A. N. Dranishnikov, V. M. Kliatskine, S. A. Melikhov, L. Montejano, S. P. Novikov, P. V. Semenov, “Evgenii Vital'evich Shchepin (on his 70th birthday)”, Russian Math. Surveys, 77:3 (2022), 559–569 |
|
2021 |
6. |
V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Math., 85:3 (2021), 351–366 |
|
2020 |
7. |
V. I. Buslaev, “Convergence of a Limit Periodic Schur Continued Fraction”, Math. Notes, 107:5 (2020), 671–682 |
8. |
V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703 |
9. |
V. I. Buslaev, “Schur's Criterion for Formal Newton Series”, Math. Notes, 108:6 (2020), 884–888 |
|
2019 |
10. |
V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580 |
|
2018 |
11. |
V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205 |
12. |
V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536 |
13. |
A. I. Aptekarev, V. K. Beloshapka, V. I. Buslaev, V. V. Goryainov, V. N. Dubinin, V. A. Zorich, N. G. Kruzhilin, S. Yu. Nemirovski, S. Yu. Orevkov, P. V. Paramonov, S. I. Pinchuk, A. S. Sadullaev, A. G. Sergeev, S. P. Suetin, A. B. Sukhov, K. Yu. Fedorovskiy, A. K. Tsikh, “Evgenii Mikhailovich Chirka (on his 75th birthday)”, Russian Math. Surveys, 73:6 (2018), 1137–1144 |
|
2017 |
14. |
V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93 |
|
2016 |
15. |
Viktor I. Buslaev, Sergey P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 , arXiv: 1505.06120
|
15
[x]
|
16. |
V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139 |
17. |
V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790 |
|
2015 |
18. |
V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 |
19. |
V. I. Buslaev, S. P. Suetin, “On Equilibrium Problems Related to the Distribution of Zeros of the Hermite–Padé Polynomials”, Proc. Steklov Inst. Math., 290 (2015), 256–263 |
20. |
V. I. Buslaev, “Capacity of a Compact Set in a Logarithmic Potential Field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 |
21. |
V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 |
|
2014 |
22. |
V. I. Buslaev, S. P. Suetin, “Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions”, Russian Math. Surveys, 69:1 (2014), 159–161 |
23. |
V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917 |
|
2013 |
24. |
V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 |
25. |
V. I. Buslaev, “An estimate for the capacity of the set of singularities of functions defined by their continued fraction expansions”, Anal. Math., 39:1 (2013), 1–27 (Russian) |
|
2012 |
26. |
V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 31–58
|
20
[x]
|
|
2011 |
27. |
A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 |
|
2010 |
28. |
V. I. Buslaev, “On Hankel determinants of functions given by their expansions in $P$-fractions”, Ukr. Math. J., 62:3 (2010), 358–372 |
|
2011 |
29. |
V. I. Buslaev, “On a criterion of rationality for a series in orthogonal polynomials”, Ukr. Math. J., 62:8 (2011), 1326–1332 |
|
2009 |
30. |
V. I. Buslaev, “Analog of the Hadamard Formula for the First Ellipse of Meromorphy”, Math. Notes, 85:4 (2009), 528–543 |
31. |
V. I. Buslaev, “An analogue of Fabry's theorem for generalized Padé approximants”, Sb. Math., 200:7 (2009), 981–1050 |
|
2008 |
32. |
V. I. Buslaev, S. F. Buslaeva, “O formulakh Adamara dlya ellipsov meromorfnosti”, Sbornik trudov Instituta matematiki NAN Ukrainy, Trudy Matem. tsentra im. N. I. Lobachevskogo, 5, no. 1, 2008, 1–8 |
|
2006 |
33. |
V. I. Buslaev, “On the Fabry Ratio Theorem for Orthogonal Series”, Proc. Steklov Inst. Math., 253 (2006), 8–21 |
|
2005 |
34. |
V. I. Buslaev, S. F. Buslaeva, “Poincare Theorem for Difference Equations”, Math. Notes, 78:6 (2005), 877–882 |
|
2003 |
35. |
V. I. Buslaev, S. F. Buslaeva, “On a generalization of Hirschhorn's formulas”, Extremal problems in the theory of functions and related problems, Tr. In-ta matem. NAN Ukrainy, 46, In-t matem. AN Ukrainy, Kiev, 2003, 7–16 |
36. |
V. I. Buslaev, S. F. Buslaeva, “On the Rogers–Ramanujan Periodic Continued Fraction”, Math. Notes, 74:6 (2003), 783–793 |
37. |
V. I. Buslaev, “Convergence of the Rogers–Ramanujan continued fraction”, Sb. Math., 194:6 (2003), 833–856 |
|
2002 |
38. |
V. I. Buslaev, “On the Baker–Gammel–Wills conjecture in the theory of Padé approximants”, Sb. Math., 193:6 (2002), 811–823 |
|
2001 |
39. |
V. I. Buslaev, “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 |
40. |
V. I. Buslaev, “On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients”, Izv. Math., 65:4 (2001), 673–686 |
41. |
V. I. Buslaev, “On the Convergence of Continued T-Fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 |
|
1998 |
42. |
V. I. Buslaev, S. F. Buslaeva, “On a theorem of Van Vleck for the convergence of continued fractions”, Ryady Fure: teoriya i prilozheniya (Kamenets-Podolskii, 1997), Tr. In-ta matem. NAN Ukrainy, 20, In-t matem. AN Ukrainy, Kiev, 1998, 43–54 |
43. |
V. I. Buslaev, “Poincaré's theorem and its applications to the convergence of continued fractions”, Sb. Math., 189:12 (1998), 1749–1764 |
|
1997 |
44. |
V. I. Buslaev, S. F. Buslaeva, “Compositions of linear-fractional transformations”, Math. Notes, 61:3 (1997), 272–277 |
|
1988 |
45. |
V. I. Buslaev, “Relations for the coefficients, and singular points of a function”, Math. USSR-Sb., 59:2 (1988), 349–377 |
|
1984 |
46. |
V. I. Buslaev, A. A. Gonchar, S. P. Suetin, “On convergence of subsequences of the $m$th row of a Padé table”, Math. USSR-Sb., 48:2 (1984), 535–540 |
|
1983 |
47. |
V. I. Buslaev, “On the poles of the $m$th row of the Padé table”, Math. USSR-Sb., 45:4 (1983), 423–429 |
|
1977 |
48. |
V. I. Buslaev, “Otsenkaproizvodnoi mnogochlena i obobschenie neravenstva S. M. Nikolskogo”, Teoriya priblizheniya funktsii, Sbornik statei, Nauka, M., 1977, 47–49 |
49. |
V. I. Buslaev, “Otsenka $(\varepsilon,\delta)$-entropii klassa tselykh funktsii v integralnoi metrike”, Anal. Math., 3:1 (1977), 11–44 |
|
1975 |
50. |
V. I. Buslaev, “Certain inequalities for polynomials with real coefficients”, Dokl. AN SSSR, 223:1 (1975), 20–22 |
51. |
V. I. Buslaev, “An inequality for the derivative of a polynomial with real coefficients”, Math. USSR-Izv., 9:2 (1975), 390–394 |
|
1974 |
52. |
V. I. Buslaev, A. G. Vitushkin, “An estimate of the code length of signals with a finite spectrum in connection with sound-recording problems”, Math. USSR-Izv., 8:4 (1974), 867–894 |
|