|
|
Publications in Math-Net.Ru |
Citations |
|
1997 |
1. |
A. S. Sorokin, “Structural formulae for some classes of analytic functions in a finitely connected domain”, Mat. Sb., 188:12 (1997), 107–134 ; Sb. Math., 188:12 (1997), 1833–1860 |
2. |
A. S. Sorokin, “Parametric representation of functions in finitely connected domains”, Sibirsk. Mat. Zh., 38:5 (1997), 1163–1178 ; Siberian Math. J., 38:5 (1997), 1008–1022 |
|
1996 |
3. |
A. S. Sorokin, “M. A. Lavrent'ev's variational method and the Hilbert problem for multiply connected circular domains”, Dokl. Akad. Nauk, 349:3 (1996), 308–311 |
|
1995 |
4. |
A. S. Sorokin, “Keldysh–Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains”, Mat. Zametki, 58:6 (1995), 878–889 ; Math. Notes, 58:6 (1995), 1306–1314 |
5. |
A. S. Sorokin, “The Keldysh–Sedov problem for multiply connected circular domains”, Sibirsk. Mat. Zh., 36:1 (1995), 186–202 ; Siberian Math. J., 36:1 (1995), 168–184 |
1
|
|
1989 |
6. |
A. S. Sorokin, “The G. M. Goluzin–P. P. Kufarev variational method and the M. V. Keldysh–L. I. Sedov formula”, Dokl. Akad. Nauk SSSR, 308:2 (1989), 273–277 ; Dokl. Math., 40:2 (1990), 321–325 |
1
|
7. |
A. S. Sorokin, “The homogeneous Keldysh–Sedov problem for multiply connected circular domains in the Muskhelishvili class $h_0$”, Differ. Uravn., 25:2 (1989), 283–293 ; Differ. Equ., 25:2 (1989), 210–218 |
|
1988 |
8. |
A. S. Sorokin, “The Schwarz problem for functions with poles in circular multiply connected domains”, Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9, 85–87 ; Soviet Math. (Iz. VUZ), 32:9 (1988), 127–131 |
|
1987 |
9. |
A. S. Sorokin, “The M. V. Keldysh–L. I. Sedov problem for multiply connected circular domains”, Dokl. Akad. Nauk SSSR, 296:4 (1987), 801–804 ; Dokl. Math., 36:2 (1988), 331–334 |
1
|
|
1973 |
10. |
A. S. Sorokin, “Villat’s formula for generalized analytic functions”, Dokl. Akad. Nauk SSSR, 210:6 (1973), 1293–1296 |
|
1972 |
11. |
I. A. Aleksandrov, A. S. Sorokin, “The Schwarz problem for multiply connected circular domains”, Sibirsk. Mat. Zh., 13:5 (1972), 971–1001 ; Siberian Math. J., 13:5 (1972), 671–692 |
9
|
|
1967 |
12. |
I. A. Aleksandrov, A. S. Sorokin, “On extending the variational method of G. M. Goluzin and P. P. Kufarev to a multiply connected region”, Dokl. Akad. Nauk SSSR, 175:6 (1967), 1207–1210 |
2
|
|
Organisations |
|
|
|
|