|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
N. A. Gureeva, R. Z. Kiseleva, Yu. V. Klochkov, A. P. Nikolaev, V. V. Ryabukha, “On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM”, Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023), 70–82 |
1
|
2. |
Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, T. A. Sobolevskaya, A. Sh. Dzhabrailov, M. Yu. Klochkov, “Varying parameterization of an ellipsoidal thin shell with FEM-based implementation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:1 (2023), 49–67 |
|
2022 |
3. |
N. A. Gureeva, R. Z. Kiseleva, Yu. V. Klochkov, A. P. Nikolaev, “On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems”, Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022), 142–151 |
4. |
A. Sh. Dzhabrailov, A. P. Nikolaev, Yu. V. Klochkov, N. A. Gureeva, T. R. Ishchanov, “Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations”, Izv. Saratov Univ. Math. Mech. Inform., 22:1 (2022), 48–61 |
|
2020 |
5. |
N. A. Gureeva, Yu. V. Klochkov, A. P. Nikolaev, M. Yu. Klochkov, “Continuos parameterization of the median surface of an ellipsoidal shell and its geometric parameters”, Mathematical Physics and Computer Simulation, 23:1 (2020), 5–12 |
|
2017 |
6. |
Yu. V. Klochkov, A. P. Nikolaev, T. A. Kiseleva, “To the question on continuous parameterization of spatial figures having an ellipse in a section”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 9, 30–35 ; Russian Math. (Iz. VUZ), 61:9 (2017), 27–31 |
1
|
7. |
Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, T. A. Kiseleva, “The use of Lagrange multipliers in the triangular element of a nonplanar shell under variable interpolation of displacements”, Sib. Zh. Ind. Mat., 20:4 (2017), 44–54 ; J. Appl. Industr. Math., 11:4 (2017), 535–544 |
6
|
|
2016 |
8. |
Yu. V. Klochkov, A. P. Nikolaev, T. A. Kiseleva, “Comparison of the scalar and vector form FEM for example elliptic cylinders”, Matem. Mod., 28:1 (2016), 65–77 ; Math. Models Comput. Simul., 8:4 (2016), 462–470 |
5
|
9. |
Yu. V. Klochkov, A. P. Nikolaev, O. V. Vakhnina, “Finite element analysis of revolution shells by using high order triangle element of discretization with correcting Lagrange multipliers”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 5, 59–63 ; Moscow University Mechanics Bulletin, 71:5 (2016), 114–117 |
7
|
|
2015 |
10. |
N. A. Gureeva, Yu. V. Klotchkov, A. P. Nikolaev, “The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:2 (2015), 28–39 |
11. |
T. A. Kiseleva, Yu. V. Klochkov, A. P. Nikolaev, “Comparison of scalar and vector FEM forms in the case of an elliptic cylinder”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 418–428 ; Comput. Math. Math. Phys., 55:3 (2015), 422–431 |
13
|
|
2013 |
12. |
J. V. Klochkov, A. P. Nikolaev, T. A. Kiseleva, “Stress-strain state of an elliptical cylinder with an ellipsoidal bottoms of dissimilar materials based FEM”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013), 65–70 |
|
Organisations |
|
|
|
|