Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Hakopian, Yurii Rubenovich


https://www.mathnet.ru/eng/person67563
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/401889

Publications in Math-Net.Ru Citations
2023
1. Yu. R. Hakopian, A. A. Manukian, G. V. Mikaelyan, “The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. II”, Proceedings of the YSU, Physical and Mathematical Sciences, 57:2 (2023),  31–43  mathnet
2. Yu. R. Hakopian, A. A. Manukian, G. V. Mikaelyan, “The Moore–Penrose inverse of tridiagonal skew-symmetric matrices. I”, Proceedings of the YSU, Physical and Mathematical Sciences, 57:1 (2023),  1–8  mathnet
2016
3. Yu. R. Hakopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. IV”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 2,  28–34  mathnet
4. Yu. R. Hakopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. III”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 1,  12–21  mathnet 1
2015
5. Yu. R. Hakopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. II”, Proceedings of the YSU, Physical and Mathematical Sciences, 2015, no. 3,  8–16  mathnet 2
6. Yu. R. Hakopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. I”, Proceedings of the YSU, Physical and Mathematical Sciences, 2015, no. 2,  11–20  mathnet 3
2014
7. Yu. R. Akopian, R. Z. Hovhannisyan, “On the two-level preconditioning in least squares method”, Proceedings of the YSU, Physical and Mathematical Sciences, 2014, no. 1,  7–15  mathnet
2003
8. Yu. R. Hakopian, H. A. Hovhannisyan, “Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. II. Multigrid preconditioner”, Proceedings of the YSU, Physical and Mathematical Sciences, 2003, no. 2,  18–24  mathnet
9. Yu. R. Hakopian, H. A. Hovhannisyan, “Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. I. Two level preconditioner”, Proceedings of the YSU, Physical and Mathematical Sciences, 2003, no. 1,  3–13  mathnet
1977
10. Yu. R. Akopyan, L. A. Oganesyan, “A variational-difference method for solving two-dimensional linear parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  109–118  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 17:1 (1977), 101–111 4

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025