|
|
Publications in Math-Net.Ru |
Citations |
|
2021 |
1. |
T. Zhanlav, Kh. Otgondorj, “On the optimal choice of parameters in two-point iterative methods for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021), 32–46 ; Comput. Math. Math. Phys., 61:1 (2021), 29–42 |
|
2019 |
2. |
T. Zhanlav, Kh. Otgondorj, O. Chuluunbaatar, “Families of optimal derivative-free two- and three-point iterative methods for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 920–936 ; Comput. Math. Math. Phys., 59:6 (2019), 864–880 |
4
|
|
2017 |
3. |
T. Zhanlav, V. Ulziibayar, O. Chuluunbaatar, “Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017), 1093–1102 ; Comput. Math. Math. Phys., 57:7 (2017), 1090–1100 |
8
|
|
2014 |
4. |
T. Zhanlav, O. Chuluunbaatar, V. Ulziibayar, “A brief description of two-sided approximation for some Newton’s type methods”, Matem. Mod., 26:11 (2014), 71–77 |
|
2012 |
5. |
T. Zhanlav, D. Hongorzul, “The behavior of the convergence of the combined iteration method for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 790–800 |
2
|
|
2009 |
6. |
T. Zhanlav, O. Chuluunbaatar, “Convergence of a continuous analog of Newton's method for solving nonlinear equations”, Num. Meth. Prog., 10:4 (2009), 402–407 |
|
2008 |
7. |
T. Zhanlav, R.-O. Mijiddorj, “Integro cubic splines and their approximation properties”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 10, 65–77 |
8. |
T. Zhanlav, R.-O. Mijiddorj, O. Chuluunbaatar, “A continuous analog of Newton's method”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 9, 27–37 |
1
|
|
1994 |
9. |
T. Zhanlav, I. V. Puzynin, “The combination of the establishment method and Newton's method for solving nonlinear differential problems”, Zh. Vychisl. Mat. Mat. Fiz., 34:2 (1994), 175–184 ; Comput. Math. Math. Phys., 34:2 (1994), 143–150 |
3
|
|
1992 |
10. |
T. Zhanlav, I. V. Puzynin, “The convergence of iterations based on a continuous analogue of Newton's method”, Zh. Vychisl. Mat. Mat. Fiz., 32:6 (1992), 846–856 ; Comput. Math. Math. Phys., 32:6 (1992), 729–737 |
13
|
11. |
T. Zhanlav, I. V. Puzynin, “An evolutionary Newton procedure for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992), 3–12 ; Comput. Math. Math. Phys., 32:1 (1992), 1–9 |
1
|
|
1991 |
12. |
T. Zhanlav, “A high-accuracy three-point spline scheme”, Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991), 40–51 ; U.S.S.R. Comput. Math. Math. Phys., 31:1 (1991), 28–36 |
|
Organisations |
|
|
|
|