Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kholostova, Olga Vladimirovna

Statistics Math-Net.Ru
Total publications: 23
Scientific articles: 23
Presentations: 2

Number of views:
This page:928
Abstract pages:5465
Full texts:2477
References:771
Professor
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person63101
List of publications on Google Scholar
List of publications on ZentralBlatt
https://orcid.org/0000-0002-6810-2025

Publications in Math-Net.Ru Citations
2023
1. O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in One Case of Integer Nonequal Frequencies”, Rus. J. Nonlin. Dyn., 19:4 (2023),  447–471  mathnet
2022
2. O. V. Kholostovaa, “On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance”, Rus. J. Nonlin. Dyn., 18:4 (2022),  481–512  mathnet  mathscinet
2021
3. O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021),  77–102  mathnet  mathscinet  scopus
2020
4. O. V. Kholostova, “On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point”, Rus. J. Nonlin. Dyn., 16:1 (2020),  59–84  mathnet  elib  scopus 1
5. O. V. Kholostova, “On the motions of a near-autonomous hamiltonian system in the cases of two zero frequencies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  672–695  mathnet 3
2019
6. O. V. Kholostova, “Nonlinear Stability Analysis of Relative Equilibria of a Solid Carrying a Movable Point Mass in the Central Gravitational Field”, Rus. J. Nonlin. Dyn., 15:4 (2019),  505–512  mathnet  elib  scopus
7. Olga V. Kholostova, “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019),  235–265  mathnet  isi  scopus 7
8. O. V. Kholostova, “On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019),  275–294  mathnet  elib 2
2018
9. A. I. Safonov, O. V. Kholostova, “On periodic motions of a symmetrical satellite in an orbit with small eccentricity in the case of multiple combinational resonance of the third and fourth orders”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018),  373–394  mathnet  elib 3
2017
10. O. V. Kholostova, “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Nelin. Dinam., 13:4 (2017),  477–504  mathnet  elib 12
11. M. V. Belichenko, O. V. Kholostova, “On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point”, Nelin. Dinam., 13:1 (2017),  81–104  mathnet  elib 5
12. Olga V. Kholostova, Alexey I. Safonov, “A Study of the Motions of an Autonomous Hamiltonian System at a 1:1 Resonance”, Regul. Chaotic Dyn., 22:7 (2017),  792–807  mathnet  isi  scopus 5
13. E. A. Vishenkova, O. V. Kholostova, “A study of permanent rotations of a heavy dynamically symmetric rigid body with a vibrating suspension point”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017),  590–607  mathnet  elib 2
14. E. A. Vishenkova, O. V. Kholostova, “On the influence of vertical vibrations on the stability of permanent rotations of a rigid body about axes lying in the main plane of inertia”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017),  98–120  mathnet  elib 2
2016
15. A. I. Safonov, O. V. Kholostova, “On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016),  418–438  mathnet  mathscinet  elib 4
2015
16. O. V. Kholostova, “The interaction of resonances of the third and fourth orders in a Hamiltonian two-degree-of-freedom system”, Nelin. Dinam., 11:4 (2015),  671–683  mathnet 5
17. Olga V. Kholostova, “On the stability of the specific motions of a heavy rigid body due to fast vertical vibrations of one of its points”, Nelin. Dinam., 11:1 (2015),  99–116  mathnet  elib 3
2012
18. O. V. Kholostova, “Motions of a two-degree-of-freedom Hamiltonian system in the presence of multiple third-order resonances”, Nelin. Dinam., 8:2 (2012),  267–288  mathnet 6
19. E. A. Vishenkova, O. V. Kholostova, “To dynamics of a double pendulum with a horizontally vibrating point of suspension”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  114–129  mathnet 6
2009
20. O. V. Kholostova, “On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body”, Nelin. Dinam., 5:3 (2009),  357–375  mathnet 4
2006
21. O. V. Kholostova, “On bifurcations and stability of resonance periodic motions of hamiltonian systems with one degree of freedom caused by degeneration of the hamiltonian”, Nelin. Dinam., 2:1 (2006),  89–110  mathnet 2
2005
22. O. V. Kholostova, “Lineaer analysis of stability the planar oscillations of a satellite being a plate in a circular orbit”, Nelin. Dinam., 1:2 (2005),  181–190  mathnet 6
1999
23. O. V. Kholostova, “On a Case of Periodic Motions of the Lagrangian Top with Vibrating Fixed Point $S^2$”, Regul. Chaotic Dyn., 4:4 (1999),  81–93  mathnet  mathscinet  zmath 3

Presentations in Math-Net.Ru
1. Èññëåäîâàíèå äâèæåíèé òâåðäîãî òåëà ñ âèáðèðóþùåé òî÷êîé ïîäâåñà â ñëó÷àå Ãåññà
O. V. Kholostova
International School of Young Mechanics and Mathematicians "Modern nonlinear dynamics"
November 8, 2019 16:00   
2. On permanent rotations of a heavy rigid body due to fast vibrations
O. V. Kholostova
International Conference on Mathematical Control Theory and Mechanics
July 6, 2015 16:10

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024