Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Nedić, Anđelija

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12
Presentations: 1

Number of views:
This page:254
Abstract pages:3011
Full texts:1147
References:261
Website: http://www.ifp.illinois.edu/~angelia/nedich.html

https://www.mathnet.ru/eng/person49173
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/349378

Publications in Math-Net.Ru Citations
1996
1. F. P. Vasil'ev, A. Nedić, M. Jaćimović, “A two-step regularized linearization method for solving minimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  9–19  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:5 (1996), 559–567  isi 4
2. A. S. Antipin, A. Nedić, M. Jaćimović, “A two-step linearization method for minimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  18–25  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:4 (1996), 431–437  isi 7
3. F. P. Vasil'ev, A. Nedić, M. Jaćimović, “A regularized continuous linearization method for minimization problems with inexact initial data”, Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  35–43  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:3 (1996), 309–316  isi 4
1995
4. F. P. Vasil'ev, A. Nedić, M. Jaćimović, “A third-order regularized continuous method of linearization”, Differ. Uravn., 31:10 (1995),  1622–1627  mathnet  mathscinet; Differ. Equ., 31:10 (1995), 1582–1588 3
5. A. Nedić, M. Jaćimović, “A third-order continuous linearization method for solving convex programming problems”, Differ. Uravn., 31:9 (1995),  1483–1487  mathnet  mathscinet  zmath; Differ. Equ., 31:9 (1995), 1437–1441
1994
6. F. P. Vasil'ev, A. Nedić, “A regularized third-order continuous gradient projection method”, Differ. Uravn., 30:12 (1994),  2033–2042  mathnet  mathscinet; Differ. Equ., 30:12 (1994), 1869–1877 4
7. A. Nedić, “A third-order continuous gradient projection method for minimization problems”, Differ. Uravn., 30:11 (1994),  1914–1922  mathnet  mathscinet; Differ. Equ., 30:11 (1994), 1767–1774
8. F. P. Vasil'ev, A. Nedić, M. Jaćimović, “A three-step regularized method of linearization for solving minimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  25–32  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 38:12 (1994), 23–30 1
9. A. S. Antipin, A. Nedić, M. Jaćimović, “A three-step method of linearization for minimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 12,  3–7  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 38:12 (1994), 1–5 5
10. F. P. Vasil'ev, A. Nedič, “A version of the regularized gradient projection method”, Zh. Vychisl. Mat. Mat. Fiz., 34:4 (1994),  511–519  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:4 (1994), 431–439  isi 10
1993
11. F. P. Vasil'ev, A. Nedić, “A three-step regularized gradient projection method for solving minimization problems with inexact initial data”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12,  35–43  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 37:12 (1993), 34–43 8
12. A. Nedich, “The three-step gradient projection method for minimization problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10,  32–37  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 37:10 (1993), 30–36 4

Presentations in Math-Net.Ru
1. Distributed Algorithms for Optimization in Networks
A. Nedić

July 22, 2020 17:00   
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024