Mathematical modelling, Nonsmooth analysis (mathematical analysis of nonsmooth functions), Non-differential optimization, Mathematical programming, Nonsmooth control systems.
Main publications:
\RBibitem{2}
\by Demyanov V.F., Giannessi F., Tamasyan G.Sh.
\paper Variational control problems with constraints via exact penalization
\serial Nonconvex optimization and its applications
\inbook Variational Analysis and Applications
\eds F.~Giannessi, A.~Maugeru
\publ USA, Springer
\vol 79
\yr 2005
\pages 301--342
\mathscinet{2159979}
\crossref{10.1007/0-387-24276-7_21}
\Bibitem{6}
\by Tamasyan G. Sh.
\paper Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives
\jour Journal of Mathematical Sciences
\yr 2013
\vol 188
\issue 3
\pages 299-321
V. N. Malozemov, N. A. Solovyeva, G. Sh. Tamasyan, “The MDM algorithm and the Sylvester problem”, Comput. Math. Math. Phys., 64:7 (2024), 1396–1412
2023
2.
E. A. Kalinina, A. M. Kamachkin, N. A. Stepenko, G. Sh. Tamasyan, “On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023), 283–299
2022
3.
V. N. Malozemov, G. Sh. Tamasyan, “Representations of continuous piecewise affine functions”, Vestn. St. Petersbg. Univ., Math., 9:1 (2022), 39–47
2021
4.
V. N. Malozemov, G. Sh. Tamasyan, “Factorization of the projection matrix onto a subspace”, Investigations on applied mathematics and informatics. Part I, Zap. Nauchn. Sem. POMI, 499, POMI, St. Petersburg, 2021, 67–76
2019
5.
V. N. Malozemov, G. Sh. Tamasyan, “A fast algorithm for solving a simple search problem”, Comput. Math. Math. Phys., 59:5 (2019), 851–856
6.
V. N. Malozemov, G. Sh. Tamasyan, “On the direction of the steepest descent”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 489–501
2018
7.
E. V. Prosolupov, G. Sh. Tamasyan, “Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function”, J. Appl. Industr. Math., 12:2 (2018), 325–333
2017
8.
V. N. Malozemov, G. Sh. Tamasyan, “Synthesis of a rational filter in the presence of complete alternance”, Comput. Math. Math. Phys., 57:6 (2017), 919–930
2016
9.
V. N. Malozemov, G. Sh. Tamasyan, “Two fast algorithms for projecting a point onto the canonical simplex”, Comput. Math. Math. Phys., 56:5 (2016), 730–743
10.
G. Sh. Tamasyan, E. V. Prosolupov, T. A. Angelov, “Comparative study of two fast algorithms for projecting a point to the standard simplex”, J. Appl. Industr. Math., 10:2 (2016), 288–301
2014
11.
G. Sh. Tamasyan, A. A. Chumakov, “Finding the distance between the ellipsoids”, J. Appl. Industr. Math., 8:3 (2014), 400–410
12.
M. V. Dolgopolik, G. Sh. Tamasyan, “On Equivalence of the Method of Steepest Descent and the Method of Hypodifferential Descent in Some Constrained Optimization Problems”, Izv. Saratov. Univ. Mat. Mekh. Inform., 14:4(2) (2014), 532–542
13.
V. N. Igolkin, V. V. Karelin, S. K. Myshkov, L. N. Polyakova, G. Sh. Tamasyan, L. A. Petrosyan, E. I. Veremey, Yu. M. Dahl, O. I. Drivotin, V. Yu. Dobrynin, N. V. Egorov, A. P. Zhabko, A. M. Kamachkin, G. A. Leonov, V. S. Novoselov, D. A. Ovsyannikov, A. N. Terekhov, S. V. Chistyakov, V. L. Kharitonov, V. M. Bure, A. Yu. Aleksandrov, S. N. Andrianov, A. O. Bochkarev, V. V. Evstafieva, V. S. Ermolin, V. V. Zakharov, I. V. Olemskoy, Yu. G. Pronina, S. L. Sergeev, A. Yu. Uteshev, O. N. Chizhova, “V. F. Demianov”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2, 154–156
2013
14.
Tamasyan G. Sh., “Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives”, Journal of Mathematical Sciences, 188:3 (2013), 299-321http://link.springer.com/article/10.1007/s10958-012-1129-0
Tamasyan G. Sh., “Gradient methods in the variational problem with free ends”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 4, 77–84
16.
Tamasyan G. Sh., “O metodakh naiskoreishego i gipodifferentsialnogo spuska v odnoi zadache variatsionnogo ischisleniya”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13 (2012), 197–217http://num-meth.srcc.msu.su/
Tamasyan G. Sh., “Chislennye metody v zadachakh variatsionnogo ischisleniya dlya funktsionalov, zavisyaschikh ot proizvodnykh vysshego poryadka”, Problemy matematicheskogo analiza, 2012, no. 67, 113–132
18.
G. Sh. Tamasyan, “Methods of steepest and hypodifferential descent in one problem of calculus of variations”, Vychisl. Metody Programm., 13:1 (2012), 197–217
2011
19.
Demyanov V. F., Tamasyan G.Sh., “Exact penalty functions in isoperimetric problems”, Optimization: A Journal of Mathematical Programming and Operations Research, 60:1, Dedicated to Professor Franco Giannessi on the occasion of his 75th birthday (2011), 153–177http://www.tandfonline.com/doi/abs/10.1080/02331934.2010.534166
Demyanov V. F., Tamasyan G. Sh., “O pryamykh metodakh resheniya variatsionnykh zadach”, Trudy instituta matematiki i mekhaniki UrO RAN, Tr. IMM UrO RAN, 16, no. 5, Institut matematiki i mekhaniki UrO RAN im. N.N. Krasovskogo, 2010, 36–47http://elibrary.ru/item.asp?id=15265830
Andramonov M.Yu., Tamasyan G.Sh., “Realizatsiya analiticheskogo kodifferentsirovaniya v pakete MATLAB”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 8 (2007), 1-5http://num-meth.srcc.msu.su/
24.
M. Yu. Andramonov, G. Sh. Tamasyan, “Implementation of analytical codifferentiation in MatLab”, Vychisl. Metody Programm., 8:1 (2007), 1–5
2005
25.
Demyanov V.F., Giannessi F., Tamasyan G.Sh., “Variational control problems with constraints via exact penalization”, Variational Analysis and Applications, Nonconvex optimization and its applications, 79, eds. F. Giannessi, A. Maugeru, USA, Springer, 2005, 301–342http://link.springer.com/chapter/10.1007/0-387-24276-7_21
Tamasyan G.Sh., “Metod tochnykh shtrafov v variatsionnoi zadache s otklonyayuschimsya argumentom”, Vestnik Sankt-Peterburgskogo universiteta, 2003, no. 2, 66–75
27.
Tamasyan G.Sh., “Exact penalty method for a variational problem with delay”, Vestn. St. Petersbg. Univ., Math., 36:2 (2003), 47–54http://www.zentralblatt-math.org/zbmath/search/?q=an (translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2003, No. 2, 66-75 (2003))