|
|
Publications in Math-Net.Ru |
Citations |
|
2014 |
1. |
D. N. Bylkov, “A construction of new classes of filter generators without equivalent states”, Mat. Vopr. Kriptogr., 5:4 (2014), 17–39 |
2. |
D. N. Bylkov, “Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence”, Mat. Vopr. Kriptogr., 5:2 (2014), 29–35 |
3. |
D. N. Bylkov, “Boolean functions generated by the most significant bits of linear recurrent sequences”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 59–60 |
6
|
|
2013 |
4. |
D. N. Bylkov, “The second coordinate sequence of a linear recurrence of maximum period over ring $\mathbb{Z}_{8}$”, Prikl. Diskr. Mat. Suppl., 2013, no. 6, 9–10 |
1
|
|
2012 |
5. |
D. N. Bylkov, O. V. Kamlovskii, “Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences”, Mat. Vopr. Kriptogr., 3:4 (2012), 25–53 |
6
|
|
2011 |
6. |
A. V. Abornev, D. N. Bylkov, “Polynomials over primary residue rings with a small unique distance”, Prikl. Diskr. Mat., 2011, no. supplement № 4, 24–25 |
|
2010 |
7. |
D. N. Bylkov, A. A. Nechaev, “An algorithm to restore a linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a linear complication of its highest coordinate sequence”, Diskr. Mat., 22:4 (2010), 104–120 ; Discrete Math. Appl., 20:5-6 (2010), 591–609 |
4
|
8. |
D. N. Bylkov, “A class of injective compressing maps on linear recurring sequences over a Galois ring”, Probl. Peredachi Inf., 46:3 (2010), 51–59 ; Problems Inform. Transmission, 46:3 (2010), 245–252 |
8
|
|
2008 |
9. |
D. N. Bilkov, “The unicity distance of à coordinate sequences family generated by complications of LRS over a Galois ring”, Prikl. Diskr. Mat., 2008, no. 2(2), 5–7 |
1
|
10. |
D. N. Bylkov, O. V. Kamlovskii, “Occurrence Indices of Elements in Linear Recurrence Sequences over Primary Residue Rings”, Probl. Peredachi Inf., 44:2 (2008), 101–109 ; Problems Inform. Transmission, 44:2 (2008), 161–168 |
3
|
|
Organisations |
|
|
|
|