Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Khaikin, M I

Statistics Math-Net.Ru
Total publications: 18
Scientific articles: 18

Number of views:
This page:133
Abstract pages:2305
Full texts:1385

https://www.mathnet.ru/eng/person39879
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/214397

Publications in Math-Net.Ru Citations
1986
1. M. I. Khaĭkin, “On the theory of a singular case of the Riemann boundary value problem for several pairs of functions and systems of singular integral equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 7,  69–76  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 30:7 (1986), 95–104 1
1985
2. M. I. Khaĭkin, “The Riemann problem for some pairs of functions in the singular case”, Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 6,  62–71  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 29:6 (1985), 76–87
1984
3. M. I. Khaikin, “Regularization of ill-posed problems for solving one-dimensional convolution integral equations”, Zh. Vychisl. Mat. Mat. Fiz., 24:10 (1984),  1474–1485  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 24:5 (1984), 117–124
1982
4. M. I. Khaikin, “Homogeneous Wiener–Hopf equation with a positive kernel”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 4,  56–63  mathnet  mathscinet  zmath
1981
5. M. I. Khaikin, “On the theory of the singular case of singular integral equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 4,  85–87  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 25:4 (1981), 106–110
1979
6. M. I. Khaikin, “A system of singular integral equations in a special case as an ill-posed problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  79–83  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 23:7 (1979), 87–91
7. M. I. Khaikin, “A singular case of matrix singular integral operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 6,  77–80  mathnet  mathscinet  zmath
1978
8. M. I. Khaikin, “Homogeneous Wiener–Hopf equation in a class of functions of moderate growth”, Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 8,  91–102  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 22:8 (1978), 72–80
9. M. I. Khaikin, “The system of Wiener–Hopf integral equations in a singular case as an ill-posed problem”, Zh. Vychisl. Mat. Mat. Fiz., 18:3 (1978),  589–596  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 18:3 (1978), 60–67
1977
10. M. I. Khaikin, “A special case of a system of singular integral equations and convolution equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 4,  141–144  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 21:4 (1977), 124–127
1976
11. M. I. Khaikin, “The set of values of a singular integral operator on a special case”, Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 2,  119–122  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 20:2 (1976), 113–116
1973
12. M. I. Khaikin, “A singular integral equation with continuous coefficients in a special case”, Trudy Sem. Kraev. Zadacham, 10 (1973),  152–162  mathnet  mathscinet  zmath
1972
13. M. I. Khaikin, “An exceptional case of the homogeneous Riemann problem with finite index of the coefficient”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 5,  92–103  mathnet  mathscinet  zmath 1
1970
14. M. I. Khaikin, “The regularization of operators with a nonclosed range of values”, Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 8,  118–123  mathnet  mathscinet  zmath 1
15. M. I. Khaikin, “The exceptional case of the Riemann problem”, Trudy Sem. Kraev. Zadacham, 7 (1970),  283–288  mathnet  mathscinet  zmath
1967
16. M. I. Khaikin, “The Wiener–Hopf equation in spaces of ordinary and generalized functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10,  83–91  mathnet  mathscinet  zmath
17. M. I. Khaikin, “An integral equation of convolution type of the first kind”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 3,  105–116  mathnet  mathscinet  zmath 1
1965
18. M. I. Khaikin, “Solvability of the problem of parallel - wall cavitational flow past a curved obstacle”, Prikl. Mekh. Tekh. Fiz., 6:2 (1965),  132–136  mathnet; J. Appl. Mech. Tech. Phys., 6:2 (1965), 126–130
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024