degenerating differential equations,
equations of mixed type,
fractional integrals and derivatives.
UDC:
517.956
Subject:
Degenerating differential equations in private derivatives and equations of mixed type. Fractional Integrals and Derivatives
Main publications:
Sh.T. Karimov, “Zadacha Koshi dlya trekhmernogo volnovogo uravneniya s singulyarnymi koeffitsientami”, Sbornik tezisov VI Ufimskoi mezhdunarodnoi konferentsii
<<Kompleksnyi analiz i differentsialnye uravneniya>> posvyaschennoi 70-letiyu chl.-korr. RAN V. V. Napalkova, IMVTs, Ufa, 2011, 88–89
Sh.T. Karimov, “Zadacha Koshi dlya chetyrekhmernogo giperbolicheskogo uravneniya s singulyarnymi koeffitsientami”, Materialy Vtorogo Mezhdunarodnogo Rossiisko-Uzbekskogo simpoziuma <<Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki>>, NII PMA KBNTs RAN, 2012, 136–139
Urinov, A.K. and Karimov, S.T., “Chapter 15. Solution of the Cauchy problem for generalized Euler–Poisson–Darboux equation by the method of fractional integrals”, Progress in partial differential equations. Asymptotic profiles, regularity and well-posedness, Based on the presentations given at a session at the 8th ISAAC congress, Moscow, Russia, August 22–27, 2011, Springer Proceedings in Mathematics & Statistics, 44, eds. Reissig, Michael et al., Springer International Publishing Switzerland 2013, Cham, 2013, 321–337
Karimov, Shakhobiddin T., “Multidimensional Generalized Erdelyi–Kober Operator and its Application to Solving Cauchy Problems for Differential Equations with Singular Coefficients.”, Fractional Calculus and Applied Analysis, 18:4 (2015), 845–861
Sh.T. Karimov, “Application Of The Multidimensional Generalized Erdélyi-Kober Operator To The Solution Of The Cauchy Problem For A Singular Polyparabolic Equation”, The 24th International Conference on Finite or Infnite Dimensional Complex Analysis and Applications, August 22 (Mon.) - August 26 (Fri.), 2016,, Anand International College of Engineering, Jaipur, India, 2016, 108
Shakhobiddin T. Karimov, “An analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 156 (2018), 3–17; J. Math. Sci. (N. Y.), 254:6 (2021), 703–717
Sh. T. Karimov, “The Cauchy problem for the degenerated partial differential equation of the high even order”, Sib. Èlektron. Mat. Izv., 15 (2018), 853–862
Sh. T. Karimov, A. K. Urinov, “Solution of the Cauchy problem for the four-dimensional hyperbolic equation with Bessel operator”, Vladikavkaz. Mat. Zh., 20:3 (2018), 57–68
Sh. T. Karimov, “On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 8, 27–41; Russian Math. (Iz. VUZ), 61:8 (2017), 22–35
Shakhobiddin T. Karimov, “About some generalizations of the properties of the Erdélyi–Kober operator and their application”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2017, no. 2(18), 20–40
O. S. Zikirov, B. I. Islomov, Sh. T. Karimov, N. Ravshanov, T. K. Yuldashev, “To the 70th anniversary of Akhmadjon Urinov”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:3 (2020), 56–58