Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Bubyakin, Igor V

Statistics Math-Net.Ru
Total publications: 10
Scientific articles: 10

Number of views:
This page:302
Abstract pages:992
Full texts:422
References:158

https://www.mathnet.ru/eng/person25282
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/317386

Publications in Math-Net.Ru Citations
2023
1. I. V. Bubyakin, “On the differential geometry of complexes of two-dimensional planes of the projective space $P^n$ containing a finite number of torsos and characterized by the configuration of their characteristic lines”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 221 (2023),  31–41  mathnet
2. I. V. Bubyakin, “To projective di erential geometry of complexes of $m$ -dimensional planes in projective space $P^n$ containing a finite number of developable surfaces”, Mathematical notes of NEFU, 30:1 (2023),  3–20  mathnet
2022
3. I. V. Bubyakin, “To projective differential geometry of $5$-dimensional complexes $2$-dimensional planes in projective space $P^5$”, Mathematical notes of NEFU, 29:3 (2022),  3–21  mathnet
2021
4. I. V. Bubyakin, I. V. Gogoleva, “On differential geometry of $\rho$-dimensional complexes $C^{ \rho}(1,1)$ of $m$-dimensional planes of the projective space $P^n$”, Mathematical notes of NEFU, 28:4 (2021),  3–16  mathnet
2020
5. I. V. Bubyakin, “On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 180 (2020),  9–16  mathnet
2019
6. I. V. Bubyakin, “On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. II”, Mathematical notes of NEFU, 26:4 (2019),  14–24  mathnet  elib 1
7. I. V. Bubyakin, “On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces. I”, Mathematical notes of NEFU, 26:2 (2019),  3–16  mathnet  elib 1
2017
8. I. V. Bubyakin, “About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces”, Mathematical notes of NEFU, 24:4 (2017),  3–16  mathnet  elib 3
9. I. V. Bubyakin, “About the structure of five-dimensional complexes of two-dimensional planes in projective space $P^5$ with a single developable surface”, Mathematical notes of NEFU, 24:2 (2017),  3–12  mathnet  elib 2
1991
10. I. V. Bubyakin, “Geometry of five-dimensional complexes of two-dimensional planes in projective space”, Funktsional. Anal. i Prilozhen., 25:3 (1991),  73–76  mathnet  mathscinet  zmath; Funct. Anal. Appl., 25:3 (1991), 223–224  isi 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024