List of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2023 |
1. |
V. R. Krym, “Comparison of basic equations of the Kaluza–Klein theory with the nonholonomic model of space–time of the sub-Lorentzian geometry”, International Journal of Modern Physics A, 38:9-10 (2023), 2350049 , 14 pp. https://www.worldscientific.com/doi/full/10.1142/S0217751X23500495 |
2. |
V. R. Krym, “On the exponential mapping of geodesics in sub-Riemannian geometry”, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Zap. Nauchn. Sem. POMI, 528, POMI, St. Petersburg, 2023, 153–165 |
|
2020 |
3. |
V. R. Krym, “The Schouten curvature and the Jacobi equation in sub-Riemannian geometry”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 498, POMI, St. Petersburg, 2020, 121–134 |
|
2018 |
4. |
V. R. Krym, “Uravnenie Yakobi dlya gorizontalnykh geodezicheskikh na negolonomnom raspredelenii i tenzor krivizny Skhoutena”, Differentsialnye Uravneniya i Protsessy Upravleniya, 2018, no. 3, 64–94 http://diffjournal.spbu.ru/RU/numbers/2018.3/article.1.3.html |
|
2012 |
5. |
V. R. Krym, “Index form for nonholonomic distributions”, Vestnik St.Petersb. Univ. Math., 45:2 (2012), 73–81 |
|
2010 |
6. |
V. R. Krym, “Jacobi fields for a nonholonomic distribution”, Vestnik St.Petersb. Univ. Math., 43:4 (2010), 232–241 |
|
2009 |
7. |
V. R. Krym, “Nonholonomous geodesics as solutions to Euler-Lagrange integral equations and the differential of the exponential mapping”, Vestnik St.Petersb. Univ. Math., 42:3 (2009), 175–184 |
|
2007 |
8. |
V. R. Krym, N. N. Petrov, “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space”, Vestnik St.Petersb. Univ. Math., 40:1 (2007), 52–60 |
|
2001 |
9. |
V. R. Krym, N. N. Petrov, “Kauzalnye struktury na gladkikh mnogoobraziyakh”, Vestn. S.-Peterb. un-ta. Ser. 1, 2001, no. 2, (9), 27–34 |
|
1999 |
10. |
V. R. Krym, “Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions”, Theoret. and Math. Phys., 119:3 (1999), 811–820 |
11. |
V. R. Krym, “Smooth kinematic-type manifolds”, Theoret. and Math. Phys., 119:2 (1999), 605–617 |
|
2002 |
12. |
V. R. Krym, “The Einstein equations in the absence of matter fields on a 5-manifold with the causal structure”, J. Math. Sci. (New York), 110:4 (2002), 2841–2847 |
|
2000 |
13. |
V. R. Krym, “Linear spaces of kinematic type”, J. Math. Sci. (New York), 100:3 (2000), 2284–2296 |
|