R. Islam, A. Ibragimov, “Class of Keller–Segel chemotactic systems based on Einstein method of Brownian motion modeling”, CMFD, 70:2 (2024), 253–277
2023
2.
A. Ibragimov, E. Zakirov, I. Indrupskiy, D. Anikeev, A. Zhaglova, “Einstein material balance and modeling of the flow of compressible fluid near the boundary”, CMFD, 69:4 (2023), 643–663
2017
3.
A. I. Ibragimov, A. I. Nazarov, “On Phragmén — Lindelöf principle for Non-divergence Type Elliptic Equations and Mixed Boundary conditions”, Mathematical Physics and Computer Simulation, 20:3 (2017), 65–76
A. I. Ibragimov, A. A. Nekrasov, “An analogue of Schwarz method for solving Zaremba problem and its application in underground fluid mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998), 150–156; Comput. Math. Math. Phys., 38:1 (1998), 146–152
1995
5.
E. M. Landis, A. I. Ibragimov, “Neumann problems in unbounded domains”, Dokl. Akad. Nauk, 343:1 (1995), 17–18
A. I. Ibragimov, “Some qualitative theorems for degenerate elliptic equations”, Mat. Zametki, 34:3 (1983), 407–416; Math. Notes, 34:3 (1983), 688–693
10.
A. I. Ibragimov, “Some qualitative properties of solutions of the mixed problem for equations of elliptic type”, Mat. Sb. (N.S.), 122(164):2(10) (1983), 168–181; Math. USSR-Sb., 50:1 (1985), 163–176
A. I. Ibragimov, “On some qualitative properties of solutions of elliptic equations with continuous coefficients”, Mat. Sb. (N.S.), 121(163):4(8) (1983), 454–468; Math. USSR-Sb., 49:2 (1984), 447–460
A. I. Ibragimov, A. A. Novruzov, “On the behavior in the neighborhood of a boundary point of the solutions of degenerate second order parabolic equations for the Zaremba problem”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1046–1048
13.
A. I. Ibragimov, “Some qualitative properties of the solutions of a mixed problem for elliptic equations in nonsmooth domains”, Dokl. Akad. Nauk SSSR, 265:1 (1982), 27–31
14.
A. I. Ibragimov, “On some qualitative properties of solutions of second-order equations of parabolic type with continuous coefficients”, Differ. Uravn., 18:2 (1982), 306–319
A. I. Ibragimov, “On the behavior in the neighborhood of boundary points and theorems on removable sets for second order elliptic equations with continuous coefficients”, Dokl. Akad. Nauk SSSR, 250:1 (1980), 25–28
A. I. Ibragimov, A. A. Novruzov, “On a criterion for regularity of a boundary point for quasi-linear parabolic equations”, Dokl. Akad. Nauk SSSR, 244:1 (1979), 29–32
1977
17.
A. I. Ibragimov, “On the behavior on the boundary of the solution of a linear degenerate equation of second order with continuous coefficients”, Dokl. Akad. Nauk SSSR, 233:3 (1977), 281–284
1976
18.
A. I. Ibragimov, “The regularity of boundary points for the solution of a quasilinear elliptic equation that is degenerate on the boundary of the domain”, Differ. Uravn., 12:10 (1976), 1815–1823
1975
19.
A. I. Ibragimov, “On the behavior on the boundary of solutions of a degenerate second-order elliptic equation”, Dokl. Akad. Nauk SSSR, 224:3 (1975), 519–522
1998
20.
M. I. Vishik, M. L. Gerver, A. I. Ibragimov, Yu. S. Ilyashenko, A. S. Kalashnikov, V. A. Kondrat'ev, A. A. Kosmodem'yanskii, A. D. Myshkis, O. A. Oleinik, E. G. Sitnikova, “Evgenii Mikhailovich Landis (obituary)”, Uspekhi Mat. Nauk, 53:6(324) (1998), 233–238; Russian Math. Surveys, 53:6 (1998), 1335–1341
Presentations in Math-Net.Ru
1.
Einstein modeling of chemotaxis system A. I. Ibragimov VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev November 15, 2023 15:55