Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Volkov, Yuriy Stepanovich

Statistics Math-Net.Ru
Total publications: 42
Scientific articles: 40
Presentations: 1

Number of views:
This page:8385
Abstract pages:17207
Full texts:6587
References:1607
Volkov, Yuriy Stepanovich
Professor
Doctor of physico-mathematical sciences (2006)
Speciality: 01.01.07 (Computing mathematics)
E-mail:
Keywords: approximation theory; numerical analysis; splines.

https://www.mathnet.ru/eng/person17842
https://scholar.google.com/citations?user=EPtN6sIAAAAJ&hl=en
https://zbmath.org/authors/ai:volkov.yuri-s
https://mathscinet.ams.org/mathscinet/MRAuthorID/206532
https://elibrary.ru/author_items.asp?spin=4078-8473
https://orcid.org/0000-0002-7298-8578
https://publons.com/researcher/2745510/yuriy-s-volkov
https://www.webofscience.com/wos/author/record/C-5152-2012
https://www.scopus.com/authid/detail.url?authorId=7103297762
https://www.researchgate.net/profile/Yuriy-Volkov-2

Publications in Math-Net.Ru Citations
2023
1. V. V. Bogdanov, Yu. S. Volkov, “A modified quadratic interpolation method for root finding”, Sib. Zh. Ind. Mat., 26:3 (2023),  5–13  mathnet; J. Appl. Industr. Math., 17:3 (2023), 491–497 1
2022
2. Yu. S. Volkov, S. I. Novikov, “Estimates of solutions to infinite systems of linear equations and the problem of interpolation by cubic splines on the real line”, Sibirsk. Mat. Zh., 63:4 (2022),  814–830  mathnet; Siberian Math. J., 63:4 (2022), 677–690 2
3. Yu. S. Volkov, “Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  71–77  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S291–S297  isi  scopus
2021
4. Yu. E. Anikonov, V. V. Bogdanov, Yu. S. Volkov, E. Yu. Derevtsov, “On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs”, Sib. Zh. Ind. Mat., 24:4 (2021),  5–24  mathnet 2
5. Yu. S. Volkov, “A remark on the connection between the second divided difference and the second derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  19–21  mathnet  elib 2
2020
6. Yu. S. Volkov, “One problem of extremal functional interpolation and the Favard constants”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  34–37  mathnet  zmath  elib; Dokl. Math., 102:3 (2020), 474–477 3
7. Yu. S. Volkov, “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, Sib. Èlektron. Mat. Izv., 17 (2020),  1921–1942  mathnet  isi 5
8. Yu. S. Volkov, V. V. Bogdanov, “On error estimates of local approximation by splines”, Sibirsk. Mat. Zh., 61:5 (2020),  1000–1008  mathnet  elib; Siberian Math. J., 61:5 (2020), 795–802  isi  scopus 4
9. Yu. S. Volkov, “Euler polynomials in the problem of extremal functional interpolation in the mean”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  83–97  mathnet  elib
2019
10. V. V. Bogdanov, Yu. S. Volkov, “Shape-preservation conditions for cubic spline interpolation”, Mat. Tr., 22:1 (2019),  19–67  mathnet; Siberian Adv. Math., 29:4 (2019), 231–262  scopus 7
11. Yu. S. Volkov, “Convergence of spline interpolation processes and conditionality of systems of equations for spline construction”, Mat. Sb., 210:4 (2019),  87–102  mathnet  mathscinet  elib; Sb. Math., 210:4 (2019), 550–564  isi  scopus 4
12. Yu. S. Volkov, “Study of the convergence of interpolation processes with splines of even degree”, Sibirsk. Mat. Zh., 60:6 (2019),  1247–1259  mathnet  elib; Siberian Math. J., 60:6 (2019), 973–983  isi  scopus 3
13. Yu. S. Volkov, “Convergence of Quartic Interpolating Splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  67–74  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S196–S202  isi  scopus 3
14. V. M. Galkin, A. V. Bogoslovskiy, Yu. S. Volkov, “On determination of gel point”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59,  53–64  mathnet  elib
2018
15. Yu. S. Volkov, “Example of parabolic spline interpolation with bounded Lebesgue constant”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  85–91  mathnet  elib
2016
16. V. M. Galkin, A. V. Bogoslovskii, Yu. S. Volkov, “Vibrational viscosimetry and a numerical method for finding the gelation dynamics”, Sib. Zh. Ind. Mat., 19:4 (2016),  22–30  mathnet  mathscinet  elib; J. Appl. Industr. Math., 10:4 (2016), 474–481  scopus 1
17. Yu. S. Volkov, “The general problem of polynomial spline interpolation”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  114–125  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 187–198  isi  scopus 5
18. V. V. Bogdanov, Yu. S. Volkov, “Shape preservation conditions under interpolation by Subbotin's parabolic splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  102–113  mathnet  mathscinet  elib 2
2014
19. Yu. S. Volkov, Yu. N. Subbotin, “50 years to Schoenberg's problem on the convergence of spline interpolation”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  52–67  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 222–237  isi  scopus 17
2012
20. Yu. S. Volkov, V. T. Shevaldin, “Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  145–152  mathnet  elib 10
21. Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  135–144  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184  isi  scopus 2
2011
22. Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, “Local approximation by splines with displacement of nodes”, Mat. Tr., 14:2 (2011),  73–82  mathnet  mathscinet  elib; Siberian Adv. Math., 23:1 (2013), 69–75 7
23. Yu. S. Volkov, V. L. Miroshnichenko, “Approximation of Derivatives by Jumps of Interpolating Splines”, Mat. Zametki, 89:1 (2011),  127–130  mathnet  mathscinet; Math. Notes, 89:1 (2011), 138–141  isi  scopus 6
24. Yu. E. Anikonov, Yu. S. Volkov, S. B. Gorshkalev, E. Yu. Derevtsov, S. V. Maltseva, “Certain Criterion for the Horizontal Homogeneity of a Medium in Inverse Kinematic Problem of Seismics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011),  3–19  mathnet; J. Math. Sci., 195:6 (2013), 741–753 3
2010
25. Yu. S. Volkov, V. V. Bogdanov, V. L. Miroshnichenko, V. T. Shevaldin, “Shape-Preserving Interpolation by Cubic Splines”, Mat. Zametki, 88:6 (2010),  836–844  mathnet  mathscinet; Math. Notes, 88:6 (2010), 798–805  isi  scopus 20
26. Yu. S. Volkov, “The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines”, Sib. Zh. Vychisl. Mat., 13:3 (2010),  243–253  mathnet; Num. Anal. Appl., 3:3 (2010), 199–207  scopus 9
2009
27. Yu. S. Volkov, V. L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Sibirsk. Mat. Zh., 50:6 (2009),  1248–1254  mathnet  mathscinet; Siberian Math. J., 50:6 (2009), 982–987  isi  scopus 19
2008
28. Yu. S. Volkov, “On complete interpolation spline finding via $B$-splines”, Sib. Èlektron. Mat. Izv., 5 (2008),  334–338  mathnet  mathscinet 8
29. E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде”, Sib. Zh. Ind. Mat., 11:3 (2008),  45–60  mathnet  mathscinet 11
2007
30. Yu. S. Volkov, V. M. Galkin, “On the choice of approximations in direct problems of nozzle design”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  923–936  mathnet  mathscinet; Comput. Math. Math. Phys., 47:5 (2007), 882–894  scopus 7
2006
31. V. V. Bogdanov, Yu. S. Volkov, “Selection of parameters of generalized cubic splines with convexity preserving interpolation”, Sib. Zh. Vychisl. Mat., 9:1 (2006),  5–22  mathnet  zmath 8
2005
32. Yu. S. Volkov, “Unconditional convergence of one more middle derivative for interpolation splines of odd degree”, Dokl. Akad. Nauk, 401:5 (2005),  592–594  mathnet  mathscinet 4
2004
33. Yu. S. Volkov, “Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree”, Mat. Tr., 7:2 (2004),  3–34  mathnet  mathscinet  zmath  elib; Siberian Adv. Math., 15:4 (2005), 96–125 12
34. V. M. Galkin, Yu. S. Volkov, “Comparison of basis functions in the direct design problem for the supersonic part of a nozzle”, Sib. Zh. Ind. Mat., 7:4 (2004),  48–58  mathnet  zmath 4
35. Yu. S. Volkov, “A new method for constructing cubic interpolating splines”, Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  231–241  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:2 (2004), 215–224 10
2003
36. Yu. S. Volkov, “On estimation of entries of a matrix inverse to a cyclic band matrix”, Sib. Zh. Vychisl. Mat., 6:3 (2003),  263–267  mathnet  zmath 2
2001
37. Yu. S. Volkov, “Nonnegative Solutions to Systems with Symmetric Circulant Matrix”, Mat. Zametki, 70:2 (2001),  170–180  mathnet  mathscinet  zmath; Math. Notes, 70:2 (2001), 154–162  isi 7
1998
38. Yu. S. Volkov, “Best Error Bounds for the Derivative of a Quartic Interpolation Spline”, Mat. Tr., 1:2 (1998),  68–78  mathnet  mathscinet  zmath; Siberian Adv. Math., 9:2 (1999), 140–150 2
39. Yu. S. Volkov, V. L. Miroshnichenko, “Constructing a mathematical model of a universal characteristic for a radial-axial hydroturbine”, Sib. Zh. Ind. Mat., 1:1 (1998),  77–88  mathnet  zmath 14
1987
40. Yu. S. Volkov, “Oscillation matrices in spline-interpolation problems”, Sibirsk. Mat. Zh., 28:3 (1987),  51–53  mathnet  mathscinet  zmath; Siberian Math. J., 28:3 (1987), 393–395  isi 1

2021
41. V. V. Arestov, V. I. Berdyshev, A. G. Babenko, Yu. S. Volkov, M. V. Deikalova, “International S.B. Stechkin's Workshop-Conference on Function Theory dedicated to the 85th anniversary of Yu.N. Subbotin and N.I. Chernykh”, Sib. Èlektron. Mat. Izv., 18:2 (2021),  93–108  mathnet 1
2011
42. Yu. S. Volkov, V. L. Miroshnichenko, S. I. Fadeev, “Splines as a geometric modeling tool (to the 80 anniversary of the birth of Yu. S. Zav'yalov)”, Sib. Èlektron. Mat. Izv., 8 (2011),  11–16  mathnet

Presentations in Math-Net.Ru
1. Convergence of interpolation processes and conditionality of systems of equations for spline construction in the general problem of spline interpolation
Yu. S. Volkov
International Conference "Approximation Theory and Applications" Dedicated to the 100th Anniversary S. B. Stechkin
September 10, 2021 12:30   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024