|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. V. Bogdanov, Yu. S. Volkov, “A modified quadratic interpolation method for root finding”, Sib. Zh. Ind. Mat., 26:3 (2023), 5–13 ; J. Appl. Industr. Math., 17:3 (2023), 491–497 |
1
|
|
2022 |
2. |
Yu. S. Volkov, S. I. Novikov, “Estimates of solutions to infinite systems of linear equations and the problem of interpolation by cubic splines on the real line”, Sibirsk. Mat. Zh., 63:4 (2022), 814–830 ; Siberian Math. J., 63:4 (2022), 677–690 |
2
|
3. |
Yu. S. Volkov, “Shape Preserving Conditions for Integro Quadratic Spline Interpolation in the Mean”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 71–77 ; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S291–S297 |
|
2021 |
4. |
Yu. E. Anikonov, V. V. Bogdanov, Yu. S. Volkov, E. Yu. Derevtsov, “On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs”, Sib. Zh. Ind. Mat., 24:4 (2021), 5–24 |
2
|
5. |
Yu. S. Volkov, “A remark on the connection between the second divided difference and the second derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021), 19–21 |
2
|
|
2020 |
6. |
Yu. S. Volkov, “One problem of extremal functional interpolation and the Favard constants”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 34–37 ; Dokl. Math., 102:3 (2020), 474–477 |
3
|
7. |
Yu. S. Volkov, “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, Sib. Èlektron. Mat. Izv., 17 (2020), 1921–1942 |
5
|
8. |
Yu. S. Volkov, V. V. Bogdanov, “On error estimates of local approximation by splines”, Sibirsk. Mat. Zh., 61:5 (2020), 1000–1008 ; Siberian Math. J., 61:5 (2020), 795–802 |
4
|
9. |
Yu. S. Volkov, “Euler polynomials in the problem of extremal functional interpolation in the mean”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020), 83–97 |
|
2019 |
10. |
V. V. Bogdanov, Yu. S. Volkov, “Shape-preservation conditions for cubic spline interpolation”, Mat. Tr., 22:1 (2019), 19–67 ; Siberian Adv. Math., 29:4 (2019), 231–262 |
7
|
11. |
Yu. S. Volkov, “Convergence of spline interpolation processes and conditionality of systems of equations for spline construction”, Mat. Sb., 210:4 (2019), 87–102 ; Sb. Math., 210:4 (2019), 550–564 |
4
|
12. |
Yu. S. Volkov, “Study of the convergence of interpolation processes with splines of even degree”, Sibirsk. Mat. Zh., 60:6 (2019), 1247–1259 ; Siberian Math. J., 60:6 (2019), 973–983 |
3
|
13. |
Yu. S. Volkov, “Convergence of Quartic Interpolating Splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 67–74 ; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S196–S202 |
3
|
14. |
V. M. Galkin, A. V. Bogoslovskiy, Yu. S. Volkov, “On determination of gel point”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59, 53–64 |
|
2018 |
15. |
Yu. S. Volkov, “Example of parabolic spline interpolation with bounded Lebesgue constant”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 85–91 |
|
2016 |
16. |
V. M. Galkin, A. V. Bogoslovskii, Yu. S. Volkov, “Vibrational viscosimetry and a numerical method for finding the gelation dynamics”, Sib. Zh. Ind. Mat., 19:4 (2016), 22–30 ; J. Appl. Industr. Math., 10:4 (2016), 474–481 |
1
|
17. |
Yu. S. Volkov, “The general problem of polynomial spline interpolation”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 114–125 ; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 187–198 |
5
|
18. |
V. V. Bogdanov, Yu. S. Volkov, “Shape preservation conditions under interpolation by Subbotin's parabolic splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 102–113 |
2
|
|
2014 |
19. |
Yu. S. Volkov, Yu. N. Subbotin, “50 years to Schoenberg's problem on the convergence of spline interpolation”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 52–67 ; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 222–237 |
17
|
|
2012 |
20. |
Yu. S. Volkov, V. T. Shevaldin, “Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 145–152 |
10
|
21. |
Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 135–144 ; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184 |
2
|
|
2011 |
22. |
Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, “Local approximation by splines with displacement of nodes”, Mat. Tr., 14:2 (2011), 73–82 ; Siberian Adv. Math., 23:1 (2013), 69–75 |
7
|
23. |
Yu. S. Volkov, V. L. Miroshnichenko, “Approximation of Derivatives by Jumps of Interpolating Splines”, Mat. Zametki, 89:1 (2011), 127–130 ; Math. Notes, 89:1 (2011), 138–141 |
6
|
24. |
Yu. E. Anikonov, Yu. S. Volkov, S. B. Gorshkalev, E. Yu. Derevtsov, S. V. Maltseva, “Certain Criterion for the Horizontal Homogeneity of a Medium in Inverse Kinematic Problem of Seismics”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011), 3–19 ; J. Math. Sci., 195:6 (2013), 741–753 |
3
|
|
2010 |
25. |
Yu. S. Volkov, V. V. Bogdanov, V. L. Miroshnichenko, V. T. Shevaldin, “Shape-Preserving Interpolation by Cubic Splines”, Mat. Zametki, 88:6 (2010), 836–844 ; Math. Notes, 88:6 (2010), 798–805 |
20
|
26. |
Yu. S. Volkov, “The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines”, Sib. Zh. Vychisl. Mat., 13:3 (2010), 243–253 ; Num. Anal. Appl., 3:3 (2010), 199–207 |
9
|
|
2009 |
27. |
Yu. S. Volkov, V. L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Sibirsk. Mat. Zh., 50:6 (2009), 1248–1254 ; Siberian Math. J., 50:6 (2009), 982–987 |
19
|
|
2008 |
28. |
Yu. S. Volkov, “On complete interpolation spline finding via $B$-splines”, Sib. Èlektron. Mat. Izv., 5 (2008), 334–338 |
8
|
29. |
E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Использование $B$-сплайнов в задаче эмиссионной $2D$-томографии в рефрагирующей среде”, Sib. Zh. Ind. Mat., 11:3 (2008), 45–60 |
11
|
|
2007 |
30. |
Yu. S. Volkov, V. M. Galkin, “On the choice of approximations in direct problems of nozzle design”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 923–936 ; Comput. Math. Math. Phys., 47:5 (2007), 882–894 |
7
|
|
2006 |
31. |
V. V. Bogdanov, Yu. S. Volkov, “Selection of parameters of generalized cubic splines with convexity preserving interpolation”, Sib. Zh. Vychisl. Mat., 9:1 (2006), 5–22 |
8
|
|
2005 |
32. |
Yu. S. Volkov, “Unconditional convergence of one more middle derivative for
interpolation splines of odd degree”, Dokl. Akad. Nauk, 401:5 (2005), 592–594 |
4
|
|
2004 |
33. |
Yu. S. Volkov, “Totally Positive Matrices in the Methods of Constructing Interpolation Splines of Odd Degree”, Mat. Tr., 7:2 (2004), 3–34 ; Siberian Adv. Math., 15:4 (2005), 96–125 |
12
|
34. |
V. M. Galkin, Yu. S. Volkov, “Comparison of basis functions in the direct design problem for the supersonic part of a nozzle”, Sib. Zh. Ind. Mat., 7:4 (2004), 48–58 |
4
|
35. |
Yu. S. Volkov, “A new method for constructing cubic interpolating splines”, Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004), 231–241 ; Comput. Math. Math. Phys., 44:2 (2004), 215–224 |
10
|
|
2003 |
36. |
Yu. S. Volkov, “On estimation of entries of a matrix inverse to a cyclic band matrix”, Sib. Zh. Vychisl. Mat., 6:3 (2003), 263–267 |
2
|
|
2001 |
37. |
Yu. S. Volkov, “Nonnegative Solutions to Systems with Symmetric Circulant Matrix”, Mat. Zametki, 70:2 (2001), 170–180 ; Math. Notes, 70:2 (2001), 154–162 |
7
|
|
1998 |
38. |
Yu. S. Volkov, “Best Error Bounds for the Derivative of a Quartic Interpolation Spline”, Mat. Tr., 1:2 (1998), 68–78 ; Siberian Adv. Math., 9:2 (1999), 140–150 |
2
|
39. |
Yu. S. Volkov, V. L. Miroshnichenko, “Constructing a mathematical model of a universal characteristic for a radial-axial hydroturbine”, Sib. Zh. Ind. Mat., 1:1 (1998), 77–88 |
14
|
|
1987 |
40. |
Yu. S. Volkov, “Oscillation matrices in spline-interpolation problems”, Sibirsk. Mat. Zh., 28:3 (1987), 51–53 ; Siberian Math. J., 28:3 (1987), 393–395 |
1
|
|
|
|
2021 |
41. |
V. V. Arestov, V. I. Berdyshev, A. G. Babenko, Yu. S. Volkov, M. V. Deikalova, “International S.B. Stechkin's Workshop-Conference on Function Theory dedicated to the 85th anniversary of Yu.N. Subbotin and N.I. Chernykh”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 93–108 |
1
|
|
2011 |
42. |
Yu. S. Volkov, V. L. Miroshnichenko, S. I. Fadeev, “Splines as a geometric modeling tool (to the 80 anniversary of the birth of Yu. S. Zav'yalov)”, Sib. Èlektron. Mat. Izv., 8 (2011), 11–16 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|