01.01.06 (Mathematical logic, algebra, and number theory)
E-mail:
,
Keywords:
ring theory, Jordan algebras, Banah algebras, Lie algebras, coalgebras.
Subject:
A class of Jordan bialgebras related to the "Jordan analog" of the classical Yang–Baxter equation was introduced. It had proved this every Jordan bialgebra defined on a finite-dimensional semisimple Jordan algebra belongs to that class. The triangle and the quasitriangle Jordan bialgebras were defined in agreement with corresponding concepts for the Lie bialgebras, and a characterization the finite-dimensional Jordan algebras admitting a nontrivial structure of a quasitriangle bialgebra was obtained.
Biography
Graduated from Faculty of Mathematics and Mechanics of Novosibirsk State University (NSU) in 1965 (department of algebra and mathematical logik). Ph.D. thesis was defended in 1981. D.Sci. thesis was defended in 1998. A list of my works contains more than 30 titles. Leder the research seminar at NSU on algebra.
Main publications:
On a class of Jordan D-bialgebras // St. Petersburg Math. J., 2000, 11, 4, 589–609.
Jordan D-bialgebras and sympectic forms on Jordan algebras // Siberian Advances in Mathematics, 2000, 10, 2, 134–142.
Jordan bialgebras and their relation to Lie bialgebras // Algebra and Logic, 1997, 36, 1, 3–25.
Finite-Dimensional Jordan Algebras Admitting the Structure of a Jordan Bialgebra // Algebra and Logic, 1999, 38, 1, 40–67.
V. N. Zhelyabin, P. S. Kolesnikov, “Zhelyabin, V.N., Kolesnikov, P.S. Dual coalgebra of the differential polinomial algebra in one variable and related coalgebras”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 792–803
V. N. Zhelyabin, A. S. Zakharov, “The superalgebras of jordan brackets defined by the $n$-dimensional sphere”, Sibirsk. Mat. Zh., 61:4 (2020), 803–822; Siberian Math. J., 61:4 (2020), 632–647
5.
V. N. Zhelyabin, “Embedding of jordan superalgebras into the superalgebras of jordan brackets”, Sibirsk. Mat. Zh., 61:1 (2020), 78–95; Siberian Math. J., 61:1 (2020), 62–75
V. N. Zhelyabin, “Addition to Block's theorem and to Popov's theorem on differentially simple algebras”, Sib. Èlektron. Mat. Izv., 16 (2019), 1375–1384
V. N. Zhelyabin, A. S. Panasenko, “Nearly finite-dimensional Jordan algebras”, Algebra Logika, 57:5 (2018), 522–546; Algebra and Logic, 57:5 (2018), 336–352
V. N. Zhelyabin, “Structure of some unital simple Jordan superalgebras with associative even part”, Sibirsk. Mat. Zh., 59:6 (2018), 1322–1337; Siberian Math. J., 59:6 (2018), 1051–1062
V. N. Zhelyabin, A. S. Panasenko, “Nil Ideals of Finite Codimension in Alternative Noetherian Algebras”, Mat. Zametki, 101:3 (2017), 395–402; Math. Notes, 101:3 (2017), 460–466
V. N. Zhelyabin, A. I. Shestakov, “Alternative and Jordan algebras admitting ternary derivations with invertible values”, Sib. Èlektron. Mat. Izv., 14 (2017), 1505–1523
V. N. Zhelyabin, A. S. Zakharov, “Some constructions for Jordan superalgebras with associative even part”, Algebra i Analiz, 28:2 (2016), 97–113; St. Petersburg Math. J., 28:2 (2017), 197–208
V. N. Zhelyabin, “Simple Jordan superalgebras with associative nil-semisimple even part”, Sibirsk. Mat. Zh., 57:6 (2016), 1262–1279; Siberian Math. J., 57:6 (2016), 987–1001
V. N. Zhelyabin, A. S. Zakharov, “Speciality of Jordan Superalgebras Related to Novikov–Poisson Algebras”, Mat. Zametki, 97:3 (2015), 359–367; Math. Notes, 97:3 (2015), 341–348
V. N. Zhelyabin, “$(-1,1)$-superalgebras of vector type: Jordan superalgebras of vector type and their universal envelopings”, Sibirsk. Mat. Zh., 56:3 (2015), 520–536; Siberian Math. J., 56:3 (2015), 411–424
V. N. Zhelyabin, M. E. Goncharov, “An example of differentially simple Lie algebra which is not a free module over its centroid”, Sib. Èlektron. Mat. Izv., 11 (2014), 915–920
V. N. Zhelyabin, A. A. Popov, I. P. Shestakov, “The coordinate ring of an $n$-dimensional sphere and some examples of differentially simple algebras”, Algebra Logika, 52:4 (2013), 416–434; Algebra and Logic, 52:4 (2013), 277–289
M. E. Goncharov, V. N. Zhelyabin, “Embedding Mal'tsev coalgebras into Lie coalgebras with triality”, Algebra Logika, 52:1 (2013), 34–56; Algebra and Logic, 52:1 (2013), 24–40
V. N. Zhelyabin, “Examples of prime Jordan superalgebras of vector type and superalgebras of Cheng–Kac type”, Sibirsk. Mat. Zh., 54:1 (2013), 49–56; Siberian Math. J., 54:1 (2013), 33–39
V. N. Zhelyabin, “New examples of simple Jordan superalgebras over an arbitrary field of characteristic zero”, Algebra i Analiz, 24:4 (2012), 84–96; St. Petersburg Math. J., 24:4 (2013), 591–600
M. E. Goncharov, V. N. Zhelyabin, “Mikheev's construction for Mal'tsev coalgebras”, Algebra Logika, 51:5 (2012), 668–671; Algebra and Logic, 51:5 (2012), 445–447
V. N. Zhelyabin, “Jordan superalgebras of vector type and projective modules”, Sibirsk. Mat. Zh., 53:3 (2012), 566–579; Siberian Math. J., 53:3 (2012), 450–460
V. N. Zhelyabin, I. B. Kaygorodov, “On $\delta$-superderivations of simple superalgebras of Jordan brackets”, Algebra i Analiz, 23:4 (2011), 40–58; St. Petersburg Math. J., 23:4 (2012), 665–677
V. N. Zhelyabin, A. S. Tikhov, “Novikov–Poisson algebras and associative commutative derivation algebras”, Algebra Logika, 47:2 (2008), 186–202; Algebra and Logic, 47:2 (2008), 107–117
V. N. Zhelyabin, I. P. Shestakov, “The Chevalley and Costant theorems for Mal'tsev algebras”, Algebra Logika, 46:5 (2007), 560–584; Algebra and Logic, 46:5 (2007), 303–317
V. N. Zhelyabin, “The coradical of a Jordan (alternative) coalgebra and the quasiregular radical of its dual algebra”, Mat. Zametki, 80:4 (2006), 509–515; Math. Notes, 80:4 (2006), 485–490
2005
29.
V. N. Zhelyabin, “Dual coalgebras of Jordan bialgebras and superalgebras”, Sibirsk. Mat. Zh., 46:6 (2005), 1302–1315; Siberian Math. J., 46:6 (2005), 1050–1061
V. N. Zhelyabin, I. P. Shestakov, “Simple special Jordan superalgebras with associative even part”, Sibirsk. Mat. Zh., 45:5 (2004), 1046–1072; Siberian Math. J., 45:5 (2004), 860–882
V. N. Zhelyabin, “Simple Special Jordan Superalgebras with Associative Nil-Semisimple Even Part”, Algebra Logika, 41:3 (2002), 276–310; Algebra and Logic, 41:3 (2002), 152–172
V. N. Zhelyabin, “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sibirsk. Mat. Zh., 39:2 (1998), 299–316; Siberian Math. J., 39:2 (1998), 261–276
Sh. A. Ayupov, A. A. Adizov, V. N. Zhelyabin, “Multiplicative maps of ordered Jordan algebras”, Mat. Zametki, 51:2 (1992), 3–8; Math. Notes, 51:2 (1992), 105–109
1985
42.
V. N. Zhelyabin, “On determining separability in alternative and Jordan
algebras”, Algebra Logika, 24:4 (1985), 392–407
43.
Sh. A. Ayupov, V. N. Zhelyabin, “Compatibility of elements in Jordan algebras”, Mat. Zametki, 37:3 (1985), 305–312; Math. Notes, 37:3 (1985), 173–176
1984
44.
V. N. Zhelyabin, “A theorem on splitting of the radical for Jordan algebras over a Hensel ring”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 4 (1984), 5–28
1980
45.
V. N. Zhelyabin, “A theorem on the splitting of the radical for alternative
algebras over a Hensel ring”, Algebra Logika, 19:1 (1980), 81–90
Yu. L. Ershov, S. S. Goncharov, V. D. Mazurov, B. S. Baizhanov, B. Sh. Kulpeshov, P. E. Alaev, A. V. Vasil'ev, E. V. Vasil'ev, E. P. Vdovin, V. V. Verbovskii, A. A. Vikent'ev, D. Yu. Vlasov, M. A. Grechkoseeva, V. N. Zhelyabin, P. S. Kolesnikov, V. M. Kopytov, L. L. Maksimova, I. A. Mal'tsev, A. S. Morozov, A. A. Nikitin, E. V. Ovchinnikova, S. P. Odintsov, D. E. Pal'chunov, N. A. Peryazev, A. G. Pinus, L. N. Pobedin, A. P. Pozhidaev, B. Poizat, V. G. Puzarenko, D. O. Revin, V. N. Remeslennikov, N. S. Romanovskii, A. N. Ryaskin, S. S. Starchenko, A. A. Stepanova, S. V. Sudoplatov, E. I. Timoshenko, D. A. Tusupov, N. G. Khisamiev, V. A. Churkin, Z. Chatzidakis, M. V. Schwidefsky, K. M. Shegirov, I. P. Shestakov, “Evgenii Andreevich Palyutin (1945–2018)”, Sib. Èlektron. Mat. Izv., 16 (2019), 1–10
2016
47.
L. A. Bokut', E. S. Golod, R. I. Grigorchuk, V. N. Zhelyabin, V. G. Kats, A. R. Kemer, V. V. Kirichenko, P. S. Kolesnikov, S. S. Kutateladze, V. N. Latyshev, Yu. N. Maltsev, G. A. Margulis, A. V. Mikhalev, A. G. Myasnikov, S. P. Novikov, A. Yu. Ol'shanskii, A. N. Parshin, V. P. Platonov, Yu. G. Reshetnyak, N. S. Romanovskii, I. A. Taimanov, O. G. Kharlampovich, V. K. Kharchenko, L. N. Shevrin, I. P. Shestakov, A. V. Yakovlev, “Efim Isaakovich Zelmanov is 60 years old”, Uspekhi Mat. Nauk, 71:4(430) (2016), 193–199; Russian Math. Surveys, 71:4 (2016), 793–800