{\bf R. Jak\v si\' c}, J. Pe\v cari\' c, \emph{New converses of the Jessen and Lah-Ribari\v c inequalities}, Math. Inequal. Appl. {\bf 17} (1), (2014), 197--216.\Bibitem{1}
\by R. Jakšić, J. Pečarić
\paper New converses of the Jessen and Lah-Ribarič inequalities
\jour Math. Inequal. Appl.
\yr 2014
\vol 17
\issue 1
\pages 197-216
\Bibitem{2}
\by R. Jakšić, J. Pečarić
\paper New converses of the Jessen and Lah-Ribarič inequalities II
\jour J. Math. Inequal.
\yr 2013
\vol 7
\issue 4
\pages 617-645
\RBibitem{3}
\by R. Jak\v si\' c, M. Krni\' c, J. Pe\v cari\' c
\paper More precise estimates for the Jensen operator inequality obtained via the Lah-Ribaric inequality
\jour Appl. Math. Comput.
\yr 2014
\vol 249
\pages 346-355
\RBibitem{4}
\by R. Jak\v si\' c, J. Pe\v cari\' c
\paper On some new converses of convex inequalities in Hilbert space
\jour Banach J. Of Math Anal.
\yr 2015
\vol 9
\issue 2
\pages 63-82
\RBibitem{5}
\by M. Krni\' c, R. Miki\' c, J. Pe\v cari\' c
\paper Double precision of the Jensen-type operator inequalities for bounded and Lipschitzian functions
\jour Aequat. Math.
\yr 2019
\vol 93
\issue 4
\pages 669-690
Rozarija Mikić, Ðilda Pečarić, Josip Pečarić, “Inequalities of the Jensen and Edmundson–Lah–Ribarič type for positive linear functionals with applications”, Mosc. Math. J., 18:4 (2018), 739–753