Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Gaisina, Galiya Akhtyarovna

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9
Presentations: 1

Number of views:
This page:384
Abstract pages:1563
Full texts:693
References:290
E-mail:

https://www.mathnet.ru/eng/person131403
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2023
1. A. M. Gaisin, G. A. Gaisina, “Refinement of Macintyre — Evgrafov type theorems”, Chelyab. Fiz.-Mat. Zh., 8:3 (2023),  309–318  mathnet
2. A. M. Gaisin, G. A. Gaisina, “On the stability of the maximum term of the Dirichlet series”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1,  25–35  mathnet; Russian Math. (Iz. VUZ), 67:1 (2023), 20–29 1
2021
3. G. A. Gaisina, “The order of growth of a series of exponentials near the boundary of the convergence domain”, Algebra i Analiz, 33:3 (2021),  31–50  mathnet; St. Petersburg Math. J., 33:3 (2022), 449–463
4. G. A. Gaisina, “Representation of analytic functions by exponential series in half-plane with given growth majorant”, Ufimsk. Mat. Zh., 13:4 (2021),  8–16  mathnet; Ufa Math. J., 13:4 (2021), 8–16  isi  scopus 1
2020
5. G. A. Gaisina, “Growth order of sum of Dirichlet series: dependence on coefficients and exponents”, Ufimsk. Mat. Zh., 12:4 (2020),  31–41  mathnet; Ufa Math. J., 12:4 (2020), 30–40  isi  scopus 1
6. A. M. Gaisin, G. A. Gaisina, “Ritt–Sugimura type theorems”, Vladikavkaz. Mat. Zh., 22:3 (2020),  47–57  mathnet 1
2019
7. A. M. Gaisin, G. A. Gaisina, “Behavior of coefficients of series of exponents of finite order near the boundary”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 162 (2019),  15–24  mathnet  mathscinet 2
2018
8. A. M. Gaisin, G. A. Gaisina, “Order of Dirichlet series with regular distribution of exponents in half-strips”, Ufimsk. Mat. Zh., 10:4 (2018),  51–63  mathnet; Ufa Math. J., 10:4 (2018), 50–63  isi  scopus
2017
9. A. M. Gaisin, G. A. Gaisina, “Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems”, Ufimsk. Mat. Zh., 9:3 (2017),  27–37  mathnet  elib; Ufa Math. J., 9:3 (2017), 26–36  isi  scopus 1

Presentations in Math-Net.Ru
1. A new look at the McIntyre conjecture
G. A. Gaisina
International Conference "Functions Theory, Operators Theory and Quantum Information Theory"
October 20, 2022 18:05   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024