|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
D. A. Tvyordyj, E. O. Makarov, “Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 49:4 (2024), 135–156 |
2. |
D. A. Tvyordyj, E. O. Makarov, R. I. Parovik, “Identification of parameters of the mathematical $\alpha$-model of radon transport in the accumulation chamber based on data from the Karymshina site in Kamchatka”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 48:3 (2024), 95–119 |
1
|
3. |
D. A. Tvyordyj, R. I. Parovik, “The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 47:2 (2024), 35–57 |
1
|
4. |
D. A. Tvyordyj, R. I. Parovik, “Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 46:1 (2024), 103–117 |
1
|
|
2023 |
5. |
D. A. Tverdyi, “Restoration of the order of fractional derivative
in the problem of mathematical modelling of radon accumulation
in the excess volume of the storage chamber based
on the data of Petropavlovsk-Kamchatsky geodynamic polygon”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2023, no. 6, 83–94 |
6. |
D. A. Tvyordyj, R. I. Parovik, “Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 45:4 (2023), 36–51 |
7. |
D. A. Tvyordyj, E. I. Malkin, “Computer simulation of the propagation of a plane electromagnetic wave in a waveguide formed by the Earth's surface and the ionosphere under the condition of inhomogeneous boundary conductivity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023), 104–120 |
8. |
D. A. Tvyordyj, E. O. Makarov, R. I. Parovik, “Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023), 86–104 |
5
|
9. |
D. A. Tvyordiy, R. I. Parovik, A. R. Hayotov, A. K. Boltaev, “Parallelization of a numerical algorithm for solving the Ñauchy problem for a nonlinear differential equation of fractional variable order using OpenMP technology”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 43:2 (2023), 87–110 |
1
|
|
2022 |
10. |
D. A. Tvyordyj, E. I. Malkin, R. I. Parovik, “Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 41:4 (2022), 66–88 |
11. |
D. A. Tvyordyj, R. I. Parovik, “Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 41:4 (2022), 47–64 |
2
|
12. |
D. A. Tvyordyj, R. I. Parovik, “Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 119–136 |
|
2020 |
13. |
D. A. Tvyordy, “The nonlocal Koshy problem for the Riccati equation
of the fractional order as a mathematical model
of dynamics of solar activity”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2020, no. 1, 57–62 |
4
|
|
2018 |
14. |
D. A. Tvyordyj, “Hereditary Riccati Equation with Fractional Derivative of Variable Order”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 154 (2018), 105–112 ; J. Math. Sci. (N. Y.), 253:4 (2021), 564–572 |
15
|
15. |
D. A. Tvyordyj, “The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 3(23), 148–157 |
1
|
|
2017 |
16. |
D. A. Tvyordyj, “The Riccati equation with variable heredity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2017, no. 1(17), 44–53 |
2
|
|
Organisations |
|
|
|
|