Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ibragimov, Danis Nailevich

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8
Presentations: 1

Number of views:
This page:424
Abstract pages:1308
Full texts:246
References:297
Candidate of physico-mathematical sciences (2017)
Speciality: 05.13.01 (System analysis, the control and processing of information (separated by fields))
Birth date: 8.01.1991
Keywords: Theory of control, mathematicla cybernetics, minimum time problem, sets of controlabillity. convex analysis

Subject:

The minimum time problem of linear discrete-time system

   
Main publications:
  1. Ibragimov D.N., Sirotin A.N., “O zadache optimalnogo bystrodeistviya dlya lineinoi diskretnoi sistemy s ogranichennym skalyarnym upravleniem na osnove mnozhestv 0-upravlyaemosti”, Avtomatika i telemekhanika, 2015, № 9, 3-30
  2. Ibragimov D.N., “Optimalnoe po bystrodeistviyu upravlenie dvizheniem aerostata”, Trudy MAI, 2015, № 83
  3. Ibragimov D.N., Sirotin A.N., “O zadache bystrodeistviya dlya klassa lineinykh avtonomnykh beskonechnomernykh sistem s diskretnym vremenem i ogranichennym upravleniem”, Avtomatika i telemekhanika, 2017, № 10, 3-32
  4. Ibragimov D.N., “O zadache bystrodeistviya dlya klassa lineinykh avtonomnykh beskonechnomernykh sistem s diskretnym vremenem, ogranichennym upravleniem i vyrozhdennym operatorov”, Avtomatika i telemekhanika, 2019, № 3, 3-25
  5. Ibragimov D.N., Osokin A.V., Sirotin A.N., Sypalo K.I., “O svoistvakh predelnykh mnozhestv upravlyaemosti dlya klassa neustoichivykh lineinykh sistem s diskretnym vremenem i l1-ogranicheniyami”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2021, № 4, 3-251

https://www.mathnet.ru/eng/person114714
List of publications on Google Scholar
List of publications on ZentralBlatt
https://elibrary.ru/author_items.asp?spin=2140-1392
https://orcid.org/0000-0001-7472-5520
https://www.webofscience.com/wos/author/record/S-3928-2019
https://www.scopus.com/authid/detail.url?authorId=56976391500

Publications in Math-Net.Ru Citations
2024
1. D. N. Ibragimov, “On the external estimation of the limit reachable and null-controlable sets for linear discrete-time systems with summary constraints on the scalar control”, Avtomat. i Telemekh., 2024, no. 4,  3–30  mathnet
2. A. V. Simkina, D. N. Ibragimov, A. I. Kibzun, “On the method of numerical simulation of limit reachable sets for linear discrete-time systems with bounded control”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:3 (2024),  46–56  mathnet
2023
3. D. N. Ibragimov, V. M. Podgornaya, “Construction of the time-optimal bounded control for linear discrete-time systems based on the method of superellipsoidal approximation”, Avtomat. i Telemekh., 2023, no. 9,  37–67  mathnet; Autom. Remote Control, 84:9 (2023), 1041–1064
4. A. V. Berendakova, D. N. Ibragimov, “About the method for constructing external estimates of the limit controllability set for the linear discrete-time system with bounded control”, Avtomat. i Telemekh., 2023, no. 2,  3–34  mathnet; Autom. Remote Control, 84:2 (2023), 97–120 3
2021
5. D. N. Ibragimov, N. M. Novozhilkin, E. Yu. Porceva, “On sufficient optimality conditions for a guaranteed control in the speed problem for a linear time-varying discrete-time system with bounded control”, Avtomat. i Telemekh., 2021, no. 12,  48–72  mathnet; Autom. Remote Control, 82:12 (2021), 2076–2096  isi  scopus 8
2019
6. D. N. Ibragimov, “On the optimal speed problem for the class of linear autonomous infinite-dimensional discrete-time systems with bounded control and degenerate operator”, Avtomat. i Telemekh., 2019, no. 3,  3–25  mathnet  elib 6
2017
7. D. N. Ibragimov, A. N. Sirotin, “On the problem of operation speed for the class of linear infinite-dimensional discrete-time systems with bounded control”, Avtomat. i Telemekh., 2017, no. 10,  3–32  mathnet  elib; Autom. Remote Control, 78:10 (2017), 1731–1756  isi  scopus 14
2015
8. D. N. Ibragimov, A. N. Sirotin, “On the problem of optimal speed for the discrete linear system with bounded scalar control on the basis of $0$-controllability sets”, Avtomat. i Telemekh., 2015, no. 9,  3–30  mathnet  elib; Autom. Remote Control, 76:9 (2015), 1517–1540  isi  elib  scopus 12

Presentations in Math-Net.Ru
1. Geometric methods for constructing time-optimal control in linear discrete systems with a total control constraint
D. N. Ibragimov
Optimization and nonlinear analysis
April 4, 2024 14:00   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024