|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
D. A. Maslov, “Nonlinear Dynamics of a Wave Solid-State Gyroscope
Taking into Account the Electrical Resistance
of an Oscillation Control Circuit”, Rus. J. Nonlin. Dyn., 19:3 (2023), 409–435 |
2. |
V. I. Kachalov, D. A. Maslov, “Analyticity and pseudo-analyticity in the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023), 1806–1814 ; Comput. Math. Math. Phys., 63:11 (2023), 1996–2004 |
|
2019 |
3. |
Yu. A. Konyaev, D. A. Maslov, “An Asymptotic Method for Reducing Systems of Differential Equations with Almost-Periodic Matrices”, Mat. Zametki, 105:1 (2019), 9–17 ; Math. Notes, 105:1 (2019), 8–15 |
|
2018 |
4. |
D. A. Maslov, I. V. Merkuryev, “Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account”, Nelin. Dinam., 14:3 (2018), 377–386 |
3
|
|
2017 |
5. |
Yu. A. Konyaev, D. A. Maslov, “Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 62–69 ; Russian Math. (Iz. VUZ), 61:10 (2017), 54–60 |
6. |
Yu. A. Konyaev, D. A. Maslov, “Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices”, Mat. Zametki, 101:2 (2017), 226–231 ; Math. Notes, 101:2 (2017), 260–264 |
1
|
7. |
D. A. Maslov, I. V. Merkuryev, “The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces”, Nelin. Dinam., 13:3 (2017), 413–421 |
3
|
8. |
D. A. Maslov, I. V. Merkuryev, “Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode”, Nelin. Dinam., 13:2 (2017), 227–241 |
5
|
|
Organisations |
|
|
|
|